Where Science and Faith Converge
  • A Critical Reflection on Adam and the Genome, Part 1

    by Telerik.Sitefinity.DynamicTypes.Model.Authors.Author | May 10, 2017

    Who doesn’t like a bargain? I sure do. And I am a sucker for 2-for-1 specials.

    For those interested in science-faith discussions, the recent book by biologist Dennis Venema (Trinity Western University) and New Testament scholar Scot McKnight (Northern Seminary) is quite the deal. Two books in one, Adam and the Genome presents a scientific and theological case for evolutionary creationism—the idea that God employed evolutionary processes to bring about the design, origin, and history of life, including humanity.1

    The first half of the book, written by Venema, presents a case for human evolution from recent work in comparative genomics and population genetics. As part of his case for human evolution, Venema makes it clear that the genetic diversity of humanity is too extensive to have come from a primordial couple—Adam and Eve.

    As an author who works in the science-faith arena, I am impressed with the writing of Venema’s portion of the book. He does a masterful job of communicating complex ideas in genomics and population genetics in an accessible way. He makes it easy for the uninitiated to understand why a growing number of evangelical Christians feel compelled to embrace evolutionary creationism.

    The author of the book’s second half, Scot McKnight, assumes the reality of human evolution along with the inevitable requirement that humanity emerged as a population, not a primordial pair. Making these two concessions, McKnight explains why he doesn’t think the Christian faith depends on a historical Adam and Eve as the sole progenitors of all humanity. Instead, he argues that Adam and Eve should be viewed as archetypal—as literary and theological concepts.

    So, have Venema and McKnight made their case?

    Even though I can’t resist 2-for-1 deals, I am not going to offer the reader a 2-for-1 review. Instead, I am limiting my critical reflections to Dennis Venema’s portion of the book. Because I’m not a biblical scholar or a theologian, I will refrain from sharing my thoughts on McKnight’s contribution to Adam and the Genome. Instead, I encourage the curious reader to take a look at articles by theologians Ken Keathley and Gavin Ortlund. Both scholars offer insightful commentary on McKnight’s analysis of the historical Adam—a much better bargain than anything I could hope to offer.

    Venema’s Case for Human Evolution

    Venema opens his case for human evolution by maintaining that the theory of biological evolution is well evidenced—the real deal. He argues that the theory of evolution has broad explanatory and predictive power.

    He then turns to recent work in comparative genomics, explaining why many biologists regard the shared features in genomes as evidence for common ancestry. Applying that insight to whole genome comparisons of humans, chimpanzees, and other great apes, Venema explains why biologists think humanity shares an evolutionary history with the great apes—and, in fact, with all life on Earth. Focusing on pseudogenes, Venema concludes the case for common descent by discussing the widespread occurrence of nonfunctional DNA sequences located throughout the genomes of humans and the great apes—usually in corresponding locations in these genomes. Venema argues that these one-time functional DNA sequence elements were rendered nonfunctional through mutational events and are retained in genomes as vestiges of evolutionary history.

    Venema then turns his attention to the question of Adam and Eve. If humanity arose through an evolutionary process, then Venema rightly points out that humanity must have begun as a population, not a primordial couple—by definition. According to evolutionary biologists, evolution is a population-level phenomenon. That being the case, if humanity arose via evolutionary processes, then there could never have been an Adam and an Eve. In support of this idea, Venema then discusses population genetics studies that indicate humanity began as an initial group of around 10,000 individuals. Based on these methods, the genetic diversity among humans today is too great to have come from just two individuals. Venema then goes on to explain how evolutionary biologists reconcile the existence of mitochondrial Eve and Y-chromosomal Adam (understood to be an actual woman and man, respectively) with the idea that humanity began as a population.

    Finally, Venema closes out his portion of the book by offering a critique of the two most common challenges to biological evolution raised by the intelligent design movement: (1) irreducible complexity, and (2) the improbability of biological information arising by chance. Venema does a nice job of explaining why most biologists are not impressed with these challenges to biological evolution, and hence, the case for intelligent design.

    Venema’s Story

    One of the things Venema does exceptionally well in Adam and the Genome is interweave throughout his four chapters the story of his intellectual conversion—from intelligent design to evolutionary creationism.

    Venema recounts growing up in a conservative Christian home and attending a private Christian school where he learned that “‘Darwin’ and ‘evolution’ were evil, of course—things that atheist scientists believed despite their overwhelming flaws, because those scientists had purposefully blinded their eyes to the truth.”2

    Venema tells how, at an early age, he was fascinated with the natural world and wanted to be a scientist. His frustration evident, Venema describes how his dreams of becoming a scientist were waylaid because of the influence of the young-earth creationism that perfused his home, school, and church community.

    Unable to afford a private Christian college, Venema headed off to a secular university, sure that his faith would be challenged by his course work. Enrolled in a premed program (because he felt it safer than pursuing a science major), Venema describes how biology failed to capture his interest, until he began to do research in a university lab as an undergraduate student. That experience transformed him from a lackluster student to one who was highly motivated. It also inspired him to give up on medicine (even though he had the grades to get into medical school) and pursue a career in science. After completing his undergraduate education, Venema earned a PhD in genetics. Venema recounts how his antievolutionary views remained intact throughout his undergraduate and graduate training. In fact, he recalls how deeply impacted he was by the challenges biochemist Michael Behe leveled against Darwinian evolution in his book Darwin’s Black Box. In this book, and elsewhere, Behe argues that biochemical systems are irreducibly complex, and because of this property cannot arise in a stepwise evolutionary process, but must originate at once, with all components simultaneously coming together.

    It was only later that Venema realized the deficiency of Behe’s case and other intelligent design arguments. According to Venema, he eventually concluded that intelligent design was based on god-of-the-gaps reasoning. Venema states, “Over the course of my personal journey away from ID, I came to an uncomfortable conclusion: ID seemed strong only where there was a lack of relevant evidence.” 3

    Is Evolutionary Creationism an Overreaction to Ill-Conceived Science-Faith Models?

    Venema does a masterful job of explaining why so many biologists are convinced that life’s design, origin, history—including humanity’s origin—are best explained by the theory of evolution. Reading through Venema’s chapters, it becomes clear that strong evidential support exists for the theory of evolution, and along with it, human evolution. But, in my view Venema doesn’t tell the full story. There are also significant events in life’s history that evolutionary theory fails to explain—for example, the origin and design of biochemical systems. In fact, Venema readily acknowledges the scientific community’s failure to explain the origin of life through evolutionary means. It was this failure combined with the elegant, sophisticated, and ingenious designs of biochemical systems that convinced me that life’s origin and design at a molecular level must be the handiwork of a Creator. Despite Venema’s assertion, when it comes to the origin and design of biochemical systems, the case for intelligent design, and hence, a Creator’s role in life’s origin has become stronger over the last three decades—not because of our ignorance, but because of what we have learned about the origin-of-life problem and the structure and function of biochemical systems.

    Yet having staked out and defended this claim in Origins of Life, The Cell’s Design, and Creating Life in the Lab, I am sympathetic to the critique Venema levels against: (1) Behe’s idea of irreducible complexity, and (2) the popular claim made by many Christian apologists that evolutionary mechanisms cannot generate biological information. Like Venema, at one time I found both arguments compelling. But as I carefully listened to the rebuttals to these arguments from origin-of-life researchers and evolutionary biologists over the years, I found myself less convinced that these specific arguments represent valid critiques of the abiogenesis and evolutionary theory. (For more details, see the Resources section of this review.)

    Unlike Venema, I didn’t abandon progressive creationism for evolutionary creationism when I soured on these two popular design arguments. Why? In spite of the limitations of these two arguments, I am more convinced than ever that the origin of life and the design of biochemical systems can’t be explained by evolutionary mechanisms. The case for a Creator doesn’t rise and fall on the validity of the arguments from irreducible complexity and the improbability of evolutionary mechanisms generating information. Instead, as I outline in a recently released video, How to Make a Case for Biochemical Design, the case for God’s role in the genesis of life and design of biochemical systems finds its basis in several different lines of evidence that collectively form a powerful weight-of-evidence case for biochemical design.

    Yet Venema doesn’t see it that way, even though he acknowledges the challenges facing an evolutionary explanation for life’s origin. Why?

    I am sure Venema would answer that his reluctance to embrace any form of intelligent design/creationism is the overwhelming evidence for common descent and human evolution. But given his story, I can’t help but wonder if there is more to it. I can’t help but wonder if Venema’s move away from intelligent design to evolutionary creationism isn’t possibly an overreaction, in part, to feeling duped by well-meaning Christians who authoritatively taught flawed scientific ideas as truth. I can’t help but wonder if Venema’s embrace of mainstream scientific ideas about evolution finds some motivation in the safety of this approach. By embracing evolutionary creationism, he will never be at odds with mainstream scientific thinking again. Those of us who espouse ideas about the design, origin, and history of life outside of the scientific mainstream know the cost of adopting these views. All of us have been ridiculed and dismissed by skeptics and people in the scientific community simply because we have the impertinence to challenge mainstream scientific ideas regarding origins and the temerity to claim that the evidence points to God’s role in the origin and design of the universe and life.

    Over the years, I have gotten to know several evolutionary creationists who have similar stories to Venema’s. I have often heard evolutionary creationists express disappointment by being unintentionally mislead when they were young and scientifically naïve by well-meaning Christians who taught them young-earth creationism, only to later discover the scientific deficiencies of that idea. It seems to me that in abandoning young-earth creationism, they, like Venema, have moved to the opposite extreme, rejecting any science-faith model that doesn’t fully embrace mainstream scientific ideas—even if those ideas challenge key biblical doctrines.

    In fact, I have had many evolutionary creationists say to me both publicly and privately: If evangelical Christians don’t accept the evolutionary paradigm, we will lose all credibility with the scientific community. I have heard evolutionary creationists argue that evangelical Christianity must adapt to the reality of evolution if the Christian faith is to remain relevant.

    I will address these concerns more fully in part 2 of this review. For now, Venema’s story serves as a cautionary tale for all of us involved in science-faith discussions. We need to make sure that our ideas are scientifically credible, even if they lie outside the scientific mainstream. It is important that we faithfully communicate the scientific consensus and why the scientific community holds to it before we offer alternative models. We also need to be willing to acknowledge the shortcomings of our approach and models, whether our ideas fall within or outside the mainstream. Young-earth, old-earth, and evolutionary creationists alike need to exercise humility when it comes to advocating for their views. Perhaps if these practices were more commonplace, extreme views such as evolutionary creationism (and young-earth creationism) wouldn’t hold such sway.

    What Motivations Influence My Views?

    Venema’s story has caused me to reflect on my own intellectual journey: from an agnostic to a theist; from a theist to a Christian, who embraced theistic evolution; and, finally, from an adherent of theistic evolution to one who now espouses progressive creationism. Do I hold my views based on evidence alone? Or are there other motivating factors? Like Venema, I would like to think that I hold my views because they best account for all the evidence, both scientific and biblical. But maybe I have a deep-seated skepticism of biological evolution because I, too, felt duped by well-meaning biology professors who taught me that the case for the evolutionary paradigm was airtight, when, in fact, I later learned was not the case whatsoever. I feel as if my journey to faith in Christ was waylaid because of my wholehearted embrace of the evolutionary paradigm, again based on a simplistic treatment of biological evolution. At one time in my life, I reasoned that if evolution can account for everything, then why is a Creator needed? God becomes superfluous in the evolutionary paradigm.

    My point is this: a complex interplay of several factors determines the views that each of us holds, including the relationship between science and the Christian faith. Sincere, thoughtful, highly educated Christians can look at the same scientific and biblical data and come to rather different conclusions. It is for this reason that when we discuss science-faith issues with others (both inside and outside the Church) we need to move past the evidence and learn about one another’s experiences and control beliefs. In doing so, hopefully we realize that no one position uniquely holds the scientific or biblical high ground.

    Unfortunately, like many evolutionary creationists, Venema writes as if evolutionary creationism is the only scientifically credible view. And McKnight, like other evolutionary creationists, adopts the posture that it is exegetically unreasonable to embrace a traditional biblical view of human origins. But, what if one reaches a different conclusion? Namely, that Scripture teaches humanity was created in God’s image through direct and personal Divine action and that all humanity comes from Adam and Eve? Does that mean, as Christians, we must abandon the scientific high ground?

    In part 2, I will argue that the answer is no. I maintain that it is possible to hold to a scientifically credible view of human origins, while at the same time embracing the traditional biblical view of human origins. However, to do so, we must abandon methodological naturalism as the philosophical framework for science. If we do so, we will find the theory of evolution doesn’t uniquely account for the data from comparative genomics and population genetics. It is possible to present a robust scientific model (see Who Was Adam?) that explains the shared similarities and differences found in the genomes of humans and the great apes as shared design features—manifestations of an archetypal design.

    Resources—Theological Reflections on Adam and the Genome

    Resources—An Old-Earth Creationist Perspective on the Scientific Case for a Traditional Biblical View of Human Origins

    Resources—The Challenges to Two Popular Design Arguments

    Endnotes
    1. Dennis R. Venema and Scot McKnight, Adam and the Genome: Reading Scripture after Genetic Science (Grand Rapids, MI: Brazos Press, 2017).
    2. Ibid., 1.
    3. Ibid., 90.
  • Conservation Biology Studies Elicit Doubts about the First Human Population Size

    by Telerik.Sitefinity.DynamicTypes.Model.Authors.Author | Apr 26, 2017

    Adam named his wife Eve, because she would become the mother of all the living.

    –Genesis 3:20

    Prior to joining Reasons to Believe in June of 1999, I spent seven years working in research and development for a Fortune 500 company. Part of my responsibilities included method development. My lab worked on developing analytical methods to measure the active ingredients in our products. But more interesting to me was the work we did designing methods to predict consumer responses to our product prototypes.

    Before we could deploy either type of method, it was critical for us to ensure that the techniques we developed would generate reliable, accurate data that could be used to make sound business decisions.

    Method Validation

    Researchers assess the soundness of scientific methods through a process called method validation. A key part of this process involves applying the method to “known” samples. If the method produces the expected result, it passes the test. For example, the team in my lab would often develop analytical methods to measure the active ingredients in our products. To validate these methods, we would carefully weigh and add specified amounts of the actives to prepared samples and then use our newly developed method to measure the ingredient levels. If we got the right results, it gave us the confidence to apply the method to real world samples.

    A Controversy about the Size of the First Human Population

    Currently, a set of scientific methods resides at the center of an important controversy among conservative and evangelical Christians about the historicity of Adam and Eve. Specifically, the scientific methods in question are designed to measure the population size of the first humans. Even though the traditional reading of the biblical creation accounts indicates humanity began as a primordial pair—an Adam and Eve—all three sets of methods indicate that the initial human population size consisted of several thousand individuals, not two, raising serious questions about the traditional Christian understanding of humanity’s origin. Some evangelical Christians argue that we must accept these findings and reinterpret the biblical creation accounts, regardless of the theological consequences. Others (myself included) question the validity of these methods. It is important to make sure that these techniques perform as intended before abandoning the traditional biblical view of humanity’s beginnings.

    The Importance of Adam and Eve’s Historicity

    The finding that humanity began as a population, not a pair, causes quite a bit of consternation for me and many other evangelical and conservative Christians. Adam and Eve’s existence and role as humanity’s founding couple are not merely academic concerns. For the Christian faith, the question of Adam and Eve’s historicity are more significant than any business decision that relied on analytical methods my lab developed. (Data from my lab was used to make some decisions that involved millions of dollars.) The historicity of Adam and Eve impacts key doctrines of the Christian faith, such as inerrancy, the image of God, the fall, original sin, marriage, and the atonement.

    Again, given the profound implications of abandoning Adam and Eve’s historicity, it is important to know if these population size methods perform as intended. They are a big part of the reason evolutionary biologists and geneticists reject Adam and Eve’s existence. To put it another way, are these methods valid, yielding accurate, reliable results?

    Measuring the Initial Human Population Size

    Currently, geneticists use three approaches to estimate the size of the initial human population. 1

    1. The most prominent method finds its basis in mathematical expressions relating the current genetic variability among humans today to mutation rate and initial population size. Using these relationships, geneticists develop mathematical models that allow them to calculate the initial population size for the first humans after measuring genetic variability of contemporary human population groups (and assuming a constant mutation rate).
    2. A more recently developed approach relies on a phenomenon called linkage disequilibrium to measure the initial population size of the first humans.
    3. The final approach (also relatively new on the scene) makes use of a process called incomplete lineage sorting to estimate humanity’ s initial population size.

    Are Population Size Methods Valid?

    So are these methods valid? When I have asked evolutionary creationists this question, they usually hem and haw, and then reply: These methods are based on sound, well-understood phenomena, and therefore should be considered reliable.

    I believe that to be true. The methods do appear to be based on sound principles. But that is not enough—not if we are to draw rigorous scientific conclusions. Scientific methods can only be considered reliable if they have been validated. When I worked in R&D, if I insisted to my bosses that they should accept the results of methods I developed because they were based on sound principles but lacked validation data, I would have been fired.

    So given the importance of the historical Adam and Eve, why should we accept anything less for population size measurements?

    To my surprise, when I survey the scientific literature, I can’t find any studies that demonstrate successful validation of any of these three population size methods. For me, this is a monumental concern, particularly given the importance of Adam and Eve’s historicity. The fact that these methods haven’t been validated provides justification for Christians to hold the results of these studies at arm’s length.

    In fact, when it comes to the first category of methods, I find something even more troubling: Studies in conservation biology raise serious questions about the validity of these methods. Of course, we can’t directly validate methods designed to measure the numbers of the first humans because we don’t have access to that initial population. But we can gain insight into the validity of these methods by turning to work in conservation biology. When a species is on the verge of extinction, conservationists often know the numbers of species that remain. And because genetic variability is critical for their recovery and survival, conservation biologists monitor genetic diversity of endangered species. In other words, conservation biologists have the means to validate population size methods that rely on genetic diversity.

    In my book Who Was Adam? I discuss three separate studies (involving mouflon sheep, Przewalski’s horses, and gray whales) in which the initial populations were known. When the researchers measured the genetic diversity generations after the initial populations were established, the genetic diversity was much greater than expected—again, based on the models relating genetic diversity and population size.2 In other words, this method failed validation in each of these cases. If researchers used the genetic variability to estimate original population sizes, the sizes would have measured larger than they actually were.

    In Who Was Adam? I also cite studies that raise doubts about the reliability of linkage disequilibrium methods to accurately measure population sizes.3 Not only is this method not validated, it, too, has failed validation.

    Recently, I conducted another survey of the scientific literature to see if I had missed any important studies involving population size and genetic diversity. Again, I was unable to find any studies that demonstrated the validity of any of the three approaches used to measure population size. Instead, I found three more studies indicating that when genetic diversity was measured for animal populations on the verge of extinction it was much greater than expected, based on the predictions derived from the mathematical models.4

    The Surprisingly High Genetic Diversity of White-Tailed Deer in Finland

    Of specific interest is a study published in 2012 by researchers from Finland. These scientists monitored the genetic diversity (focusing on 14 locations in the genome consisting of microsatellite DNA) of a population of white-tailed deer that were introduced into Finland from North America in 1934.5 The initial population consisted of three females and one male, and since then has grown to between 40,000 to 50,000 individuals. This population has remained isolated from all other deer populations since its introduction.

    Though the researchers found that the genetic diversity of this population was lower than for a comparable population in Oklahoma (reflecting the genetic bottleneck that occurred when the original members of the population were relocated), it was still surprisingly high. Because of this unexpectedly high genetic diversity, size estimates for the initial population would be much greater than four individuals. To put it another way, this population size method fails validation—one more time.

    Why is this approach to measuring population sizes so beleaguered, when the method is based on sound, well-understood principles? In Who Was Adam? (and elsewhere), I point out that the equations undergirding this method are simplified, idealized mathematical relationships that do not take into account several relevant factors that are difficult to mathematically model, such as population dynamics through time and across geography.

    Recently, conservation biologists have identified another factor influencing genetic diversity that confounds the straightforward application of the equations used to calculate initial population size: long generation times. That is, animals with long generation times display greater-than-anticipated genetic diversity, even when the population begins with a limited number of individuals.6

    This finding is significant when it comes to discussions about Adam and Eve’s historicity. Human beings have long generation times—longer than white-tailed deer. From a creation model perspective, these long generation times help to explain why humanity displays such relatively large genetic diversity, even though we come from a primordial pair. And it suggests that the initial population size estimates for modern humans are likely exaggerated.

    So did humanity originate as a population or a primordial pair?

    The claims of some geneticists and evolutionary biologists notwithstanding, it’s hard to maintain that humanity began as a population of thousands of individuals, because the methods used to generate these numbers haven’t been validated—in fact, work in conservation biology makes me wonder if these methods are trustworthy at all. Given their track record, I would never have used these methods when I worked in R&D to make a business decision.

    Resources

    Endnotes
    1. For a recent and accessible discussion of these methods see Dennis R. Venema and Scot McKnight, Adam and the Genome: Reading Scripture after Genetic Science (Grand Rapids, MI: Brazos Press, 2017), 45–48.
    2. Fazale Rana with Hugh Ross, Who Was Adam? A Creation Model Approach to the Origin of Humanity (Covina, CA: RTB Press, 2015), 349–353.
    3. Ibid.
    4. Catherine Lippé, Pierre Dumont, and Louis Bernatchez, “High Genetic Diversity and No Inbreeding in the Endangered Copper Redhorse, Moxostoma hubbsi (Catostomidae, Pisces): The Positive Sides of a Long Generation Time,” Molecular Ecology 15 (June 2006): 1769–1780, doi:10.1111/j.1365-294X.2006.02902.x; Frank Hailer et al., “Bottlenecked But Long-Lived: High Genetic Diversity Retained in White-Tailed Eagles upon Recovery from Population Decline,” Biology Letters 2 (June 2006): 316–319, doi:10.1098/rsbl.2006.0453; Jaana Kekkonen, Mikael Wikström, and Jon E. Brommer, “Heterozygosity in an Isolated Population of a Large Mammal Founded by Four Individuals Is Predicted by an Individual-Based Genetic Model,” PLoS ONE 7 (September 2012): e43482, doi:10.1371/journal.pone.0043482.
    5. Kekkonen, Wikström, and Brommer, “Heterozygosity in an Isolated Population.”
    6. Lippé, Dumont, and Bernatchez, “High Genetic Diversity and No Inbreeding”; Hailer et al., “Bottlenecked but Long-Lived.”
  • Does Radiocarbon Dating Prove a Young Earth? A Response to Vernon R. Cupps

    by Telerik.Sitefinity.DynamicTypes.Model.Authors.Author | Apr 19, 2017

    In my experience, one of the most persuasive scientific claims for a young Earth is the detection of carbon-14 in geological samples such as coal and fossilized dinosaur remains.1 According to young-earth creationists (YECs), if the coal samples and fossils are truly millions of years old (as the scientific community claims), then there shouldn’t be any trace of carbon-14 in these samples. Why? It’s because the half-life of carbon-14 is about 5,700 years, meaning that all the detectable carbon-14 should have disappeared from the samples long before they reach even 100,000 years of age.

    In Dinosaur Blood and the Age of the Earth, I respond to this young-earth argument, suggesting three mechanisms that can account for carbon-14 in fossil remains (and by extension, in geological materials) from an old-earth perspective.

    When YECs detect carbon-14, they find it at low levels, corresponding to age dates older than 30,000 years (not 3,000 to 6,000 years old, as their model predicts, by the way). These low levels make it reasonable to think that some of the carbon-14 signal comes from contamination of the sample by, say, microorganisms picked up from the environment.

    These low levels also make it conceivable that some of the detected carbon-14 is due to a ubiquitous carbon-14 background. Cosmic rays are continuously producing radiocarbon from nitrogen-14. Because of this nonstop production, carbon-14 is everywhere and will show up at extremely low levels in any measurement that is made, even if it isn’t present in the actual sample.

    It is also possible that some of the carbon-14 in the fossil and coal samples arises from the in situ conversion of nitrogen-14 to carbon-14 driven by the decay of radioactive elements in the environment. Because fossils and coal derive from once-living organisms, there will be plenty of nitrogen-14 contained in these specimens. For example, environmental uranium and thorium would readily infuse into the interiors of fossils, and as these elements decay, the high energy they release will convert nitrogen-14 to carbon-14.

    Employing a “back-of-the-envelope” flux analysis, Vernon Cupps—a YEC affiliated with the Institute of Creation Research—has challenged my assessment, concluding that neither (1) the production of carbon-14 from cosmic radiation nor (2) the decay of radioactive isotopes in the environment is sufficient to account for the carbon-14 detected in fossil and geological samples.2

    Though I think his analysis may be unrealistically simplistic, let’s assume Cupps’s calculations are correct. He still misses my point. In Dinosaur Blood and the Age of the Earth, I argue that all three possible sources simultaneously contribute to the detectable carbon-14. In other words, while no single source may fully account for the detectable carbon-14, when combined, all three can. Cupps’s analysis neglects the contribution of the ubiquitous background carbon-14 and possible sources of contamination from the environment.

    Ironically, the low levels of carbon-14 detected in fossils and geological specimens by YECs actually argue against a young Earth, not an old Earth.

    How can that be?

    If fossil and geological specimens are between 3,000 and 6,000 years old, then somewhere between 50 and 75 percent of the original carbon-14 should remain in the sample. This amount of material should generate a strong carbon-14 signal. The fact that these specimens all age-date to 30,000 to 45,000 years old means that less than 2 percent of the original carbon-14 remains in these samples—if the results of this measurement are taken at face value. It becomes difficult to explain this result if these samples are less than 6,000 years old. On the other hand, the weak carbon-14 signal measured by YECs does make sense if carbon-14 does not reflect the material originally in the sample, but instead stems from a combination of (1) contamination from the environment, (2) ubiquitous background radiocarbon, and/or (3) irradiation of the samples by isotopes such as uranium or thorium in the environment.

    To put it plainly, it is difficult to reconcile the carbon-14 measurements made by YECs with fossil and geological samples that are 3,000 to 6,000 years old, Cupps’s analysis notwithstanding.

    On the other hand, an old-earth perspective has the explanatory power to account for the low levels of carbon-14 associated with fossils and other geological samples.

    Resources

    Endnotes
    1. Vernon R. Cupps, “Radiocarbon Dating Can’t Prove an Old Earth,” Acts & Facts, April 2017, https://www.icr.org/article/9937.
    2. Ibid.
  • Can Science Detect the Creator’s Fingerprints in Nature?

    by Telerik.Sitefinity.DynamicTypes.Model.Authors.Author | Apr 12, 2017

    Which of these does not know that the hand of the Lord has done this?

    Job 12:9

     

    In early March (2017), I took part in a forum at Samford University (Birmingham, AL), entitled Genesis and Evolution. At this two-day event, the panelists presented and discussed scientific and biblical perspectives on Young-Earth, Old-Earth, and Evolutionary versions of creationism.

    The organizers charged me with the responsibility of describing Old-Earth Creationism (OEC) from a scientific vantage point, while also providing the rational for my views.

    As part of my presentation, the organizers asked me to discuss the assumptions that undergird my views. One of the foundational tenets of OEC is an important idea taught in Scripture: God has revealed Himself to us through the record of nature. According to passages such as Job 12: 7-9, part of that revelation includes the ‘fingerprints’ He has left on His creation.

    If Scripture is true, then scientific investigation should uncover evidence for design throughout the natural realm. Science should find God’s fingerprints. And, indeed, it has. As a biochemist, I am deeply impressed with the elegance, sophistication, and ingenuity of the cell’s molecular systems. In my view, these features reflect the work of a mind—a Divine Mind. But, the evidence for intelligent design in the biochemical realm is much more extensive. For example, the eerie similarity between the structure and function of biochemical systems, and the objects and devices produced by human designers further evinces the Creator’s handiwork. In my book The Cell’s Design, I show how the remarkable similarities serve to revitalize William Paley’s Watchmaker Argument for God’s existence.

    To describe the hallmark features of human designs, Paley used the term contrivance. Human designs are contrivances. And so, are biological systems. If human contrivances require the work of human designers, then, it follows that biological systems—which, too, are contrivances—require a Divine designer. In The Cell’s Design, I introduce the concept of an intelligent design pattern. Following Paley, I identify several features that characterize human designs. Collectively, these characteristics form a pattern that can then be matched to the features of biological and biochemical systems. The greater the match between the intelligent design pattern and biological/biochemical systems, the greater the certainty that designs found in living systems are the work of a mind.

    In response to my presentation at the Genesis and Evolution event, cell biologist Ken Miller from Brown University—a well-known critic of intelligent design—argued that creationism and intelligent design cannot be part of the construct of science, because science lacks the capability of detecting the supernatural. In his book, The Triumph of Evolution and the Failure of Creationism, paleontologist Niles Eldredge makes this very point:

    “We humans can directly experience the material world only through our senses, and there is no way we can directly experience the supernatural. Thus, in the enterprise that is science, it isn’t an ontological claim that a God does not exist, but rather an epistemological recognition that even if such a God did exist, there would be no way to experience that God given the impressive, but still limited, means afforded by science. And that is true by definition.”1

    But, as I pointed out during my presentation and elsewhere there are scientific disciplines predicated on science’s capacity to detect the activity of intelligent agency. One is SETI: The Search for Extraterrestrial Intelligence. Astronomers involved in this research program seek ways to distinguish between electromagnetic radiation emanating from astronomical objects from those hypothetically generated by intelligent agents that are part of alien civilizations. To put it another way, SETI is an intelligent design research program.

    Research by scientists from the Harvard-Smithsonian Center for Astrophysics powerfully illustrates this point.2 These investigators propose that fast radio burst (FRBs) emanate from alien technology, specifically planet-sized transmitters powering interstellar probes.

    Astronomers discovered FRBs in 2007. Since then, around two dozen exceedingly bright, millisecond bursts of radio emissions have been detected. Astronomers think that FRBs originate in distant galaxies, billions of light years away.

    The Harvard-Smithsonian scientists calculate that the transmitters could generate enough energy from sunlight to move probes through space, if the light was directed to onto structures twice the size of Earth. Given the energies involved, the transmitters would have to be cooled. Again, the researchers estimate that a water-cooled device twice Earth’s size could keep the transmitter from melting.

    The researchers recognize that construction of the transmitters lays beyond our technology, but is possible given the laws of physics. They speculate aliens built these transmitter to power light sails to move space craft, weighing a million tons and carrying living creatures across interstellar space.

    These astronomers maintain that the transmitter would have to continually focus its beam on the light sails. FRBs originate when the transmitter and light sails briefly point in Earth’s direction due to the relative motion of the transmitter and light sail.

    So, are FRBs evidence for alien technology? Avi Loeb, one of the Harvard-Smithsonian scientists, admits that their proposal is speculative, but justifies it because, “we haven’t identified a possible natural source with any confidence.”3 But, Loeb argues, “Deciding what’s likely ahead of time limits the possibilities. It’s worth putting ideas out there and letting the data be the judge.”4

    So, contrary to the protests of scientists, such as Miller and Eldredge, science does have the tool kit to detect the handiwork of intelligent agents and even discern the capabilities and motives of the intelligent designer(s). So, why not let intelligent design proponents and creationists put their ideas out there and let the data be the judge?

    It is interesting that the Harvard-Smithsonian astronomers think they can recognize the work of intelligent designers who possess capabilities beyond what we can understand—and, maybe, even imagine. They also think that they can discern the purpose behind the alien technology—space exploration. So why can’t science recognize the work of a Creator whose capabilities exist beyond what we can imagine?

    So, considering the proposal by the Harvard-Smithsonian investigators, it is disingenuous for Miller, Eldredge, and other scientists, to reject, out of hand, the claim the scientific evidence for God’s fingerprints in biochemical systems. I contend that the intelligent design pattern that I describe in The Cell’s Design can be used to rigorously—and, even, quantitatively—characterize the Creator’s activity in biological systems. Moreover, as I have discussed previously, science has the tools to identify the designer.

    As the apostle Paul wrote, evidence for the Creator is “clearly seen from what has been made.” (Romans 1:20) If only the scientific community would be willing to look.

    Resources:

    Fast Radio Bursts: E. T. Is Not Calling Home by Hugh Ross (article)

    Fast Radio Bursts Update by Hugh Ross (article)

    A Biochemical Watch Found in a Cellular Heath by Fazale Rana (article)

    Can Science Identify the Intelligent Designer? by Fazale Rana (article)

    The Cell’s Design By Fazale Rana (book)

    Endnotes
    1. Niles Eldredge, The Triumph of Evolution and the Failure of Creationism (New York: Holt and Company, 200) p. 13.
    2. Harvard-Smithsonian Center for Astrophysics, “Could Fast Radio Burst Be Powering Alien Probes?” ScienceDaily (March 9, 2017), sciencedaily.com/releases/2017/03/170309120419.htm
    3. Harvard-Smithsonian Center for Astrophysics, “Could Fast Radio Burst Be Powering Alien Probes?” ScienceDaily (March 9, 2017), sciencedaily.com/releases/2017/03/170309120419.htm
    4. Harvard-Smithsonian Center for Astrophysics, “Could Fast Radio Burst Be Powering Alien Probes?” ScienceDaily (March 9, 2017), www.sciencedaily.com/releases/2017/03/170309120419.htm
  • What Does the Discovery of Earth’s Oldest Fossils Mean for Evolutionary Models?

    by Telerik.Sitefinity.DynamicTypes.Model.Authors.Author | Mar 29, 2017

    Communication can be a complex undertaking. Often, people don’t say what they really mean. And if they do, their meaning is often veiled in what they say. That’s why it’s important to learn how to read between the lines. Understanding the real meaning when something isn’t explicitly stated usually requires experience and some insider’s knowledge.

    Thanks to my expertise in biochemistry and origin-of-life research and 20 years of experience as a Christian apologist, I can usually read between the lines when scientists respond to discoveries that challenge the evolutionary paradigm, such as the recently reported discovery of Earth’s oldest fossils. Because of their fear that intelligent design proponents and creationists will make use of these types of discoveries to advance the case for a Creator, scientists can be adept at masking their concern when they discuss the implications of these discoveries. But if you know how to read between the lines, their consternation is as plain as day.

    Earth’s Oldest Fossils

    An international team made up of scientists from the United Kingdom, United States, Canada, and Australia recently reported on the discovery of microfossils from a geological formation in the northern part of Quebec, Canada.1 Formed from ancient hydrothermal vents, this iron-rich geological system dates somewhere between 3.77 and 4.3 billion years in age.

    The putative microfossils consist of microscopic hematite filaments and tubes, like those found in modern hydrothermal vents. Today, iron-oxidizing microbes produce hematite filaments and tubes when sheaths of extracellular materials become coated by iron oxyhydroxide. Added evidence for the biogenicity of these microfossils comes from carbonate and apatite associated with the hematite structures. These compounds can also be produced as by-products of the metabolic activity of microorganisms. The research team also discovered graphite inclusions enriched in carbon-12, a geochemical signature of life. Finally, the Raman spectrum of the carbonaceous deposits display features that also point to the biological origin of this material.

    Matthew Dodd, one of the research team members, argues that “we can think of alternative explanations for each of these singular observations, but why all of these features occur together can really only be explained by one thing, which is a biological interpretation.”2

    The discovery of these microfossils comes on the heels of the discovery of stromatolites in newly exposed rock outcroppings in Greenland, dating at 3.7 billion years.3 Both recent discoveries corroborate earlier work that yielded several different geochemical markers for biological activity. In short, an impressive weight of evidence points to the early appearance of complex and diverse microbial life on Earth.

    Skepticism about Bioauthenticity

    Despite this impressive collection of evidence, several scientists have expressed skepticism about the bioauthenticity of the fossils. Journalist Sarah Kaplan explains why: “Findings like these are subject to intense scrutiny because they have potentially far-reaching implications for the study of early organisms on Earth and other planets.”4

    As I have discussed previously when the discovery of 3.7-billion-year-old stromatolite fossils were unearthed in Greenland, one of the implications of the early appearance of metabolically complex and diverse microbial life on Earth is that it calls into question evolutionary explanations for the origin of life. These discoveries indicate that life appeared suddenly on Earth, in a geological instant. Yet traditionally, origin-of-life researchers maintained that life’s origin via chemical evolution would have required hundreds of millions of years, perhaps even a billion years.

    This concern can be read between the lines in the objections raised by scientists responding to this discovery.

    Some argue that the research team hasn’t amassed enough evidence to convince them of the biogenicity of the fossils, pointing out that extraordinary claims require extraordinary evidence. But the claim that life appeared early in Earth’s history is only extraordinary within the evolutionary paradigm. To view these microfossils as extraordinary highlights the trouble these fossil finds cause for an evolutionary approach to the origin-of-life question.

    Others argue that iron-oxidizing microbes are too complex to have appeared this early in Earth’s history. Some assert that the rock layers containing the fossils are much younger than 3.77 billion years, raising concerns about the dating methods used to determine the age of the rocks harboring the microfossils. Again, both complaints reveal concerns about the impact that this fossil find has on the evolutionary explanation for life’s beginning. The hope is that by forcing the fossils to appear much later in Earth’s history, scientists can explain the metabolic complexity of the organisms that produced the hematite deposits by giving evolutionary processes more time. Yet there is no reason to dispute the dates for the rock formations in northern Canada, and the case for the biogenicity of the fossils is strong.

    Some dismiss the bioauthenticity of the microfossils because it would require life to originate under hostile conditions, caused by the late heavy bombardment. These hostile conditions would have frustrated the origin-of-life process, potentially sterilizing Earth, making it difficult to imagine how life could have emerged, let alone diversified, at 3.77 billion years ago—at least from an evolutionary vantage point. If these fossils aren’t authentic, then scientists don’t have to confront the counterintuitive fact that life appeared under hostile conditions.

    It seems to me that these scientists are dangerously close to evaluating the validity of the 3.77-billion-year-old microfossils based on how well they fit into the evolutionary paradigm, instead of evaluating evolutionary explanations for the origin of life based on the fossil evidence—a complete reversal of the way that the scientific method is supposed to work.

    Nevertheless, a quick read between the lines reveals just how awkwardly this fossil find fits within the evolutionary paradigm.

    Implications for Creation Models

    Though the discovery of 3.77-billion-year-old microfossils confounds evolutionary origin-of-life models, it affirms RTB’s origin-of-life model. As described in Origins of Life, two key predictions of this model include (1) life appearing on Earth soon after the planet’s formation and (2) first life possessing intrinsic complexity. And these predictions are satisfied by this latest advance.

    The writing is on the wall: the case for a Creator’s role in the origin of life is becoming more and more evident.

    Resources

    Endnotes
    1. Matthew S. Dodd et al., Evidence for Early Life in Earth’s Oldest Hydrothermal Vent Precipitates,”Nature 543 (March 2017): 60–64, doi:10.1038/nature21377.
    2. Sarah Kaplan, “Newfound 3.77-Billion-Year-Old Fossils Could Be Earliest Evidence of Life on Earth,” Washington Post, March 1, 2017, https://www.washingtonpost.com/news/speaking-of-science/wp/2017/03/01/newfound-3-77-billion-year-old-fossils-could-be-earliest-evidence-of-life-on-earth.
    3. Allen P. Nutman et al., “Rapid Emergence of Life Shown by Discovery of 3,700-Million-Year-Old Microbial Structures,” Nature 537 (September 2016): 535–38, doi:10.1038/nature19355.
    4. Kaplan, “Newfound 3.77-Billion-Year-Old Fossils.”
  • Latest Insights into Obesity Fatten the Case for Human Design

    by Telerik.Sitefinity.DynamicTypes.Model.Authors.Author | Mar 22, 2017

    As a biochemist, I have come up with a radical new diet plan: Eat less and exercise more. Yet, recent work by a research team led by Herman Pontzer at Hunter College exposed the flaws in my newfangled diet before I could even try it out. As it so happens, an emerging body of data indicates that exercise contributes very little to weight loss.

    This surprising, counterintuitive finding has important implications for medical practitioners trying to combat a worldwide obesity epidemic. It also highlights the elegant design of the human body and supports the growing case for human exceptionalism.

    The Obesity Epidemic

    Some of the latest statistics indicate that worldwide, 1 in 3 people are overweight and 1 in 10 suffer from obesity. This problem has serious consequences because obesity plays a part in the etiology of type 2 diabetes, cardiovascular disease, and certain forms of cancer.

    Of course, the cause of obesity is straightforward: People consume more calories than they need. One common-sense solution is to have people exercise more. Presumably the obesity epidemic is linked to a sedentary lifestyle. Throughout most of human history, our forebearers lived physically demanding lives. In contrast, people today engage in limited physical activity. Presumably, this inactivity lowers daily energy expenditure, leading to excessive weight gain, as caloric intake exceeds caloric outtake. Ready access to energy-dense foods only serves to exacerbate this caloric imbalance.

    But as it turns out, exercise appears to have little to no bearing on weight loss, defying conventional wisdom. While exercise has many health benefits, weight loss doesn’t appear to be one of them. Why? Because, based on the latest research, increasing our physical activity doesn’t lead to a greater caloric expenditure. As a corollary, the only way to lose weight is to restrict caloric intake.

    Constrained Energy Expenditure

    Over the course of the last few years, researchers at Hunter College have sought to understand what, if any, aspect of the Western lifestyle contributes to obesity. In the process, they have learned that the sedentary lifestyle in the West is not the problem. They discovered that when people transition from an inactive lifestyle to one characterized by moderate activity, a small increase in energy expenditure occurs. But, beyond that point, energy expenditure plateaus. Additional activity doesn’t translate into increased energy expenditure; instead total energy outlay appears to be constrained.

    For example, in 2012 the research team from Hunter College published the results of a study in which they examined the energy expenditure of the Hadza people, indigenous hunter-gatherers who live in the woodland and savanna of northern Tanzania. Anthropologists think that their way of living closely resembles the lifestyle of the first modern humans. As expected, the investigators determined that the Hadza are much more active than people who live Western lifestyles. Despite that difference, the average daily energy expenditure of the Hadza was no different than people from the Western world (once corrected for age, body size, and body composition).1

    In a broader study, the Hunter College scientists found the same trend when examining average daily energy expenditure for a sample of 332 people from Africa and North America. The sample included 25- to 45-year-old men and women representing people with a variety of lifestyles. After correcting for age, body size, and composition, average daily energy expenditure appeared to be constant, regardless of the amount of daily activity.2

    The Hunter College researchers speculate that as physical activity increases, our bodies conserve calories by reducing (1) our basal metabolic rate, (2) our repair processes, and (3) our growth rate. Additionally, women also conserve energy by reducing estrogen production and (for women who are nursing) decreasing lactation. The researchers also speculate that men and women may reduce energy expenditure by altering our posturing behaviors.

    Constrained Energy Expenditure and the Case for Human Design

    In many ways, constrained energy expenditure functions as an ingenious design to ensure human survival. For most of human history, our ancestors lived as hunter-gatherers—a highly active, physically demanding way of life. Yet when hunting and foraging for food, day-to-day success is not guaranteed. Humans could never have endured as a species if our daily energy expenditures didn’t plateau. When caloric intake is low (because of food scarcity), reducing activity level is not an option for hunter-gatherers because reduced activity makes it even less likely that they will find enough food to provide the minimal daily caloric intake. When food is scarce, the only way to endure is to double down foraging efforts. But increased foraging wouldn’t be possible if caloric expenditures increased linearly with activity. Constraining caloric output by slowing down basal metabolic rates and other processes allows hunter-gatherers to maintain high activity levels even when food isn’t plentiful.

    As a creationist, I see constrained energy expenditure as an ingenious biological design befitting a Creator who made human beings to be fearfully and wonderfully made.

    Constrained Energy Expenditure and the Case for Human Exceptionalism

    When it comes to constraining daily energy expenditure, humans aren’t unique. It appears as if all primates limit their daily energy outlay. For example, the daily energy expenditures of primates in the wild is no different than the caloric output of primates living out their lives in a zoo or in a laboratory setting.

    But what does make us unique is the magnitude of our daily energy expenditure. Humans require about 600 more calories per day than chimpanzees and nearly 1,000 more calories than orangutans.3 The primary reason for this difference is our large brain size. Maintenance of our large brains requires an energy outlay not demanded of other primates. Compared to other primates, we have accelerated metabolic processes.

    But our large brain size (and our advanced cognitive abilities, capacities for symbolism, and theory of mind that go along with it) allow us to thrive in the face of this additional energy demand. The first anatomically modern humans were adept at shaping their diets to consist of calorie-rich foods. Cooking their food also allowed them to extract more calories and other nutrients from the food they collected. They also shared food with one another. These practices reflect our unique nature as human beings and arise from our symbolism and capacity for theory of mind—properties that reflect the image of God.

    The unexpected insight into the relationship between physical activity and energy expenditure points to insights about human beings that are initially unexpected for those of us who view humans as the product of God’s handiwork. Constrained energy expenditure doesn’t make much sense if we think about it in the context of a Western lifestyle. But when we consider it in light of the way human beings have lived for much of human history, it makes perfect sense. And the difference in our average energy expenditure compared to other primates highlights our unique and exceptional nature, adding to the weight (pun intended) of evidence for human exceptionalism.

    Returning to my diet plan: I guess it doesn’t take a biochemist to know what do to lose weight—just eat less.

    Resources

    Endnotes
    1. Herman Pontzer et al., “Hunter-Gatherer Energetics and Human Obesity,” PLoS ONE 7 (July 2012): id. e40503, doi:10.1371/journal.pone.0040503.
    2. Herman Pontzer et al., “Constrained Total Energy Expenditure and Metabolic Adaptation to Physical Activity in Adult Humans,” Current Biology 26 (February 2016): 410–17, doi:10.1016/j.cub.2015.12.046.
    3. Herman Pontzer et al., “Metabolic Acceleration and the Evolution of Human Brain Size and Life History,” Nature 533 (May 2016): 390–92, doi:10.1038/nature17654.
  • Protein-Binding Sites ENCODEd into the Design of the Human Genome

    by Telerik.Sitefinity.DynamicTypes.Model.Authors.Author | Mar 15, 2017

    At last year’s AMP Conference, I delivered a talk titled: “How the Greatest Challenges Can Become the Greatest Opportunities for the Gospel.” I illustrated this point by describing three scientific concepts related to the origin of humanity that 20 years ago stood as insurmountable challenges to the traditional biblical view of human origins. But, thanks to scientific advances, these concepts have been replaced with new insights that turn these challenges into evidence for the Christian faith.

    The Challenge of Junk DNA

    One of the challenges I discussed centered on junk DNA—nonfunctional DNA littering the genomes of most organisms. Presumably, these nonfunctional DNA sequences arose through random biochemical, chemical, and physical events, with functional DNA converted into useless junk, in some instances. In fact, when the scientific community declared the human genome sequence completed in 2003, estimates at that time indicated that around 95 percent of the human genome consist of junk sequences.

    Since I have been involved in apologetics (around 20 years), skeptics (and believers) have regarded the high percentages of junk DNA in genomes as a significant problem for intelligent design and creation models. Why would an all-powerful, all-knowing, and all-good God create organisms with so much junk in their genomes? The shared junk DNA sequences found among the genomes of humans and the great apes compounds this challenge. For many, these shared sequences serve as compelling evidence for common ancestry among humans and the other primates. Why would a Creator introduce nonfunctional DNA sequences into corresponding locations in genomes of humans and the great apes?

    But what if the junk DNA sequences are functional? It would undermine the case for common descent, because these shared sequences could reasonably be interpreted as evidence for common design.

    The ENCODE Project

    In recent years, numerous discoveries indicate that virtually every class of junk DNA displays function, providing mounting support for a common-design interpretation of junk DNA. (For a summary, see the expanded and updated edition of Who Was Adam?) Perhaps the most significant advance toward that end came in the fall of 2012 with the publication of phase II results of the ENCODE project—a program carried out by a consortium of scientists with the goal of identifying the functional DNA sequence elements in the human genome.

    To the surprise of many, the ENCODE project reported that around 80 percent of the human genome displays function, with the expectation that this percentage should increase with phase III of the project. Many of the newly recognized functional elements play a central role in regulating gene expression. Others serve critical roles in establishing and maintaining the three-dimensional hierarchical structure of chromosomes.

    If valid, the ENCODE results would force a radical revision of the way scientists view the human genome. Instead of a wasteland littered with junk DNA sequences, the human genome (and the genome of other organisms) would have to be viewed as replete with functional elements, pointing to a system far more complex and sophisticated than ever imagined—befitting a Creator’s handiwork. (See the articles listed in the Resources section below for more details.)

    ENCODE Skeptics

    Within hours of the publication of the phase II results, evolutionary biologists condemned the ENCODE project, citing a number of technical issues with the way the study was designed and the way the results were interpreted. (For a response to these complaints go here, here, and here.)

    These technical complaints continue today, igniting the junk DNA war between evolutionary biologists and genomics scientists. Though the concerns expressed by evolutionary biologists are technical, some scientists have suggested the real motivation behind the criticisms of the ENCODE project are philosophical—even theological—in nature. For example, molecular biologists John Mattick and Marcel Dinger write:

    There may also be another factor motivating the Graur et al. and related articles (van Bakel et al. 2010; Scanlan 2012), which is suggested by the sources and selection of quotations used at the beginning of the article, as well as in the use of the phrase ‘evolution-free gospel’ in its title (Graur et al. 2013): the argument of a largely non-functional genome is invoked by some evolutionary theorists in the debate against the proposition of intelligent design of life on earth, particularly with respect to the origin of humanity. In essence, the argument posits that the presence of non-protein-coding or so-called ‘junk DNA’ that comprises >90% of the human genome is evidence for the accumulation of evolutionary debris by blind Darwinian evolution, and argues against intelligent design, as an intelligent designer would presumably not fill the human genetic instruction set with meaningless information (Dawkins 1986; Collins 2006). This argument is threatened in the face of growing functional indices of noncoding regions of the genome, with the latter reciprocally used in support of the notion of intelligent design and to challenge the conception that natural selection accounts for the existence of complex organisms (Behe 2003; Wells 2011).1

    Is DNA-Binding Activity Functional?

    Even though there may be nonscientific reasons for the complaints leveled against the ENCODE project, it is important to address the technical concerns. One relates to how biochemical function was determined by the ENCODE project. Critics argued that ENCODE scientists conflated biochemical activity with function. As a case in point, three of the assays employed by the ENCODE consortium measure binding of proteins to the genome, with the assumption that binding of transcription factors and histones to DNA indicated a functional role for the target sequences. On the other hand, ENCODE skeptics argue that most of the measured protein binding to the genome was random.

    Most DNA-binding proteins recognize and bind to short stretches of DNA (4 to 10 base pairs in length) comprised of highly specific nucleotide sequences. But given the massive size of the human genome (3.2 billion genetic letters), nonfunctional binding sites will randomly occur throughout the genome, for statistical reasons alone. To illustrate: Many DNA-binding proteins target roughly between 1 and 100 sites in the genome. Yet, the genome potentially harbors between 1 million and 1 billion binding sites. The hundreds of sites that are slight variants of the target sequence will have a strong affinity to the DNA-binding proteins, with thousands more having weaker affinities. Hence, the ENCODE critics maintain that much of the protein binding measured by the ENCODE team was random and nonfunctional. To put it differently, much of the protein binding measured in the ENCODE assays merely is a consequence of random biochemical activity.

    Nonfunctional Protein Binding to DNA Is Rare

    This challenge does have some merit. But, this criticism may not be valid. In an earlier response to this challenge, I acknowledged that some protein binding in genomes will be random and nonfunctional. Yet, based on my intuition as a biochemist, I argued that random binding of proteins throughout the genome would be disruptive to DNA metabolism, and, from an evolutionary perspective would have been eliminated by natural selection. (From an intelligent design/creation model vantage point, it is reasonable to expect that a Creator would design genomes with minimal nonfunctional protein-binding sites.)

    As it happens, new work by researchers from NYU affirms my assessment.2 These investigators demonstrated that protein binding in genomes is not random but highly specific. As a corollary, the human genome (and genomes of other organisms) contains very few nonfunctional protein-binding sites.

    To reach this conclusion, these researchers looked for nonfunctional protein-binding sites in the genomes of 75 organisms, representative of nearly every major biological group, and assessed the strength of their interaction with DNA-binding proteins. The researchers began their project by measuring the binding affinity for a sample of regulatory proteins (from humans, mice, fruit flies, and yeast) with every possible 8 base pair sequence combination (32,896). Based on the binding affinity data, the NYU scientists discovered that nonfunctional binding sites with a high affinity for DNA binding proteins occurred infrequently in genomes. To use scientific jargon to describe their findings: The researchers discovered a negative correlation between protein-binding affinity and the frequency of nonfunctional binding sites in genomes. Using statistical methods, they demonstrated that this pattern holds for all 75 genomes in their study.

    They attempted to account for the frequency of nonfunctional binding sequences in genomes by modeling the evolutionary process, assuming neutral evolution in which random mutations accrue over time free from the influence of natural selection. They discovered that this modeling failed to account for the sequence distributions they observed in the genomes, concluding that natural selection must have weeded high affinity nonfunctional binding sites in genomes.

    These results make sense. The NYU scientists point out that protein mis-binding would be catastrophic for two reasons: (1) it would interfere with several key processes, such as transcription, gene regulation, replication, and DNA repair (the interference effect); and (2) it would create inefficiencies by rendering DNA-binding proteins unavailable to bind at functional sites (the titration effect). Though these problems may be insignificant for a given DNA-binding protein, the cumulative effects would be devastating because there are 100 to 1,000 DNA-binding proteins per genome with 10 to 10,000 copies of each protein.

    The Human Genome Is ENCODEd for Design

    Though the NYU researchers conducted their work from an evolutionary perspective, their results also make sense from an intelligent design/creation model vantage point. If genome sequences are truly the product of a Creator’s handiwork, then it is reasonable to think that the sequences comprising genomes would be optimized—in this case, to minimize protein mis-binding. Though evolutionary biologists maintain that natural selection shaped genomes for optimal protein binding, as a creationist, it is my contention that the genomes were shaped by an intelligent Agent—a Creator.

    These results also have important implications for how we interpret the results of the ENCODE project. Given that the NYU researchers discovered that high affinity nonfunctional binding sites rarely occur in genomes (and provided a rationale for why that is the case), it is difficult for critics of the ENCODE project to argue that transcription factor and histone binding assays were measuring mostly random binding. Considering this recent work, it makes most sense to interpret the protein-binding activity in the human genome as functionally significant, bolstering the original conclusion of the ENCODE project—namely, that most of the human genome consists of functional DNA sequence elements. It goes without saying: If the original conclusion of the ENCODE project stands, the best evidence for the evolutionary paradigm unravels.

    Our understanding of genomes is in its infancy. Forced by their commitment to the evolutionary paradigm, many biologists see genomes as the cobbled-together product of an unguided evolutionary history. But as this recent study attests, the more we learn about the structure and function of genomes, the more elegant and sophisticated they appear to be. And the more reasons we have to believe that genomes are the handiwork of our Creator.

    Resources

    Endnotes
    1. John S. Mattick and Marcel E. Dinger, “The Extent of Functionality in the Human Genome,” The HUGO Journal 7 (July 2013): doi:10.1186/1877-6566-7-2.
    2. Long Qian and Edo Kussell, “Genome-Wide Motif Statistics Are Shaped by DNA Binding Proteins over Evolutionary Time Scales,” Physical Review X 6 (October–December 2016): id. 041009, doi:10.1103/PhysRevX.6.041009.
  • Hagfish Slime Expands the Case for a Creator

    by Telerik.Sitefinity.DynamicTypes.Model.Authors.Author | Mar 08, 2017

    The designs found in biological systems never cease to amaze me. Even something as gross and seemingly insignificant as hagfish slime displays remarkable properties, befitting the handiwork of a Creator. In fact, the design of hagfish slime is so ingenious, it is serving as the source of inspiration for researchers from the US Navy in their quest to develop new types of military technology.

    What Are Hagfish?

    Hagfish are ancient creatures that first appeared on Earth around 520 million years ago, with representative specimens recovered in the Cambrian fossil assemblages. These eel-like creatures are about 20 inches in length with loose fitting skin that varies in color from pink to blue-gray, depending on the species.

    The hagfish are jawless but have a mineralized encasement around their skull (cranium). With eyespots instead of true eyes, these creatures have no vision. Hagfish are bottom-dwellers. To explore their environment, they make use of whisker-like structures. As scavengers, hagfish consume dead and dying creatures by burrowing into their bodies and ingesting the remains from the inside out. Remarkably, hagfish absorb nutrients through their skin and gills, in addition to feeding with their mouths. In fact, researchers estimate that close to half their nutrient intake comes through absorption.

    Hagfish Slime

    When disturbed or attacked by predators, hagfish secrete a slime from about 100 glands that line the flanks of their bodies. (This behavior explains why hagfish are sometimes called slime eels.) Produced by epithelial and gland thread cells, the slime rapidly expands to 10,000 times its original volume. A single hagfish can generate around 5.5 gallons of slime each time its disturbed. Once secreted, the slime coats the gills of attacking fish, suffocating the predator. With the predator distracted, the hagfish performs this defensive maneuver that allows it to escape, while scrapping the slime off its body to prevent self-suffocation.

    Two different types of proteins comprise hagfish slime. One of the components, mucin, is a large protein found widely throughout nature, serving as the primary component of mucus. Secreted by epithelial cells, mucin interacts with water molecules, restricting their movement, contributing to the slime’s viscosity.1

    Additionally, hagfish slime consists of long, thread-like proteins. These protein threads are 12 nanometers in diameter and 15 centimeters long! (That is one big molecule.) These dimensions equate to a rope that is 1 centimeter in diameter and 1.5 kilometers in length. These protein fibers are incredibly strong, equivalent to a string that is 100 times thinner than a strand of human hair, but 10 times stronger than a piece of nylon.

    Inside the gland thread cells, these protein fibers are carefully packaged like a skein of yarn, held together by other proteins that serve as a type of molecular glue.2 When the secreted hagfish slime contacts seawater, the glue proteins dissolve, leading to an explosive unraveling of the protein skeins, without any of the fibers becoming tangled. The protein threads contribute to the slime’s viscoelastic properties and provide the mechanism for the rapid swelling of the slime.

    Hagfish Slime Inspires Military Technologies

    The unusual and ingenious properties of the slime and the slime’s thread proteins have inspired researchers from the US Navy to explore their use in military technology. For example, the remarkable durability of the protein fibers (reminiscent of Kevlar) suggests an application for them in bulletproof vests. The properties of the hagfish slime could also be used as a flame retardant and a shark repellent for Navy divers.

    Other commercial labs are exploring applications that include food packaging, bungee cords, and bandages. In fact, some have gone as far as to dub the thread proteins as the ultimate biodegradable biofiber.

    Biomimetics and the Case for a Creator

    In recent years, engineers have routinely and systematically benefited by insights from biology to address engineering problems and to inspire new technologies by either directly copying (or mimicking) designs from biology, or using insights from biological designs to guide the engineering enterprise.

    From my perspective, the use of biological designs to guide engineering efforts fits awkwardly within the evolutionary paradigm. Why? Because evolutionary biologists view biological systems as the products of an unguided, historically contingent process that co-opts preexisting systems to cobble together new ones. Evolutionary mechanisms can optimize these systems, but they are still kludges.

    Given the unguided nature of evolutionary mechanisms, does it make sense for engineers to rely on biological systems to solve problems and inspire new technologies? Conversely, biomimetics and bioinspiration find a natural home in a creation model approach to biology. Using designs in nature to inspire engineering makes sense only if these designs arose from an intelligent Mind—even if they are as disgusting as the slime secreted by a bottom-dwelling scavenger.

    Resources

    Endnotes
    1. Lukas Böni et al., “Hagfish Slime and Mucin Flow Properties and Their Implications for Defense,” Scientific Reports 6 (July 2016): id. 30371, doi:10.1038/srep30371.
    2. Timothy Winegard et al., “Coiling and Maturation of a High-Performance Fibre in Hagfish Slime Gland Thread Cells,” Nature Communications 5 (April 2014): id. 3534, doi:10.1038/ncomms4534; Mark A. Bernards Jr. et al., “Spontaneous Unraveling of Hagfish Slime Thread Skeins Is Mediated by a Seawater-Soluble Protein Adhesive,” Journal of Experimental Biology 217 (April 2014): 1263–68, doi:10.1242/jeb.096909.
  • The Remarkable Scientific Accuracy of Psalm 139

    by Telerik.Sitefinity.DynamicTypes.Model.Authors.Author | Mar 01, 2017

    For you created my inmost being; you knit me together in my mother’s womb. I praise you because I am fearfully and wonderfully made; your works are wonderful, I know that full well.

    – Psalm 139:13–14

    Psalm 139 has been on my mind quite a bit lately. Maybe it’s because I have recently written a couple of articles about the incredible design of human pregnancy—design that highlights just how fearfully and wonderfully human beings are made.

    Posting these articles to my Facebook page prompted one of my Facebook friends, Eric, to ask a thought-provoking question:

    “Psalm 139:13 says God ‘knit’ us in our mother’s womb. This sounds a lot to me like DNA replication. Is this reading science into the text?”

    Given the importance of DNA replication to embryological development and the specific features of the replication process, I understand why Eric would want to make that comparison. While I think that there are passages in Scripture that anticipate (even predict) scientific discoveries, I don’t see Psalm 139 referring to DNA replication. (By the way, I appreciate Eric’s caution about reading science into the text.)

    Having said that, I do think that the description of God knitting each one of us together in our mother’s womb is an apt analogy for the process of embryological development at the cellular level, because both knitting and development are predicated on forethought and rely on a special type of information—qualities that reflect the activity of an Intelligent Agent.

    An Overview of Embryo Growth and Development

    Embryological development begins the moment the egg cell (oocyte) becomes fertilized by a sperm cell, yielding a zygote. In turn, the zygote undergoes several rounds of cell division (referred to as cleavage) to produce a berry-like structure, called a morula. All of this happens by the third or fourth day of pregnancy.

    Over the next couple of days, the morula undergoes changes that characterize the process of embryogenesis. In addition to undergoing growth and division, cells in the morula begin to migrate relative to one another to form a structure with a hollow sphere called a blastula. Within the sphere is a clump of cells called the inner cell mass.
    Development of the embryo

    The next stage in embryogenesis sees the inner cell mass transform into a stack of three cellular layers (called germ layers) through cell growth, division, and migration. At this stage, the embryo is referred to as the gastrula.

    The specific cell layers of the gastrula are labeled: (1) the ectoderm, (2) the mesoderm, and (3) the endoderm. Each of these cell layers is fated to develop into different organ systems in the body. The ectoderm forms the nervous system and the epidermis of the skin. The mesoderm forms muscles, the skeletal system, blood and blood vessels, and the dermis of the skin. The endoderm forms the linings of the digestive and respiratory systems, and organs that comprise the digestive system, such as the liver and pancreas.

    After gastrulation, the next stage involves organ formation. Organogenesis begins in each of the individual cell layers and involves the careful orchestration of several processes, including cell growth, cell division, cell-to-cell communication, cell migration, differentiation of cells into specialized types, secretion of extracellular materials, and even cell death (which is necessary to sculpt the tissues and organs).

    These cellular processes are directed by the complex interplay between gene networks within the cells (with genes turning on and off) and chemical gradients produced from materials secreted by the cells. Some scientists think that bioelectric fields generated by the cells of the developing embryo also direct embryogenesis.1 The patterns formed by the chemical gradients and bioelectric fields direct the movements, differentiation, and behavior of the embryonic cells. Still, the scientific community is unclear what ultimately determines the chemical gradient and bioelectric field patterns. To put it another way, while scientists are beginning to understand the role that chemical gradients and bioelectric fields play in development, they have no idea where the instructions ultimately come from that direct individual cells in the developing embryo to contribute to and, in turn, respond to the chemical gradients and bioelectric fields that guide embryonic development.

    Perhaps the problem has to do with the fact that the scientific community views embryogenesis from a strictly materialistic/naturalistic framework. But what if embryo development were to be examined from a creation model vantage point?

    Embryological Development and the Case for Intelligent Design

    Remarkably, the instructions for embryogenesis appear to be instantiated in the cells that make up the developing embryo. From a creation model perspective, these instructions must come from a Mind, because instructions are a form of information (specifically, algorithmic information) and common experience teaches that algorithms emanate from a Mind. Toward that end, origin-of-life researchers Paul Davies and Sara Walker recently acknowledged that currently there is no evolutionary explanation for algorithmic information instantiated in living matter.2

    Another reason to think that embryological development stems from a Creator’s involvement relates to the foresight required to formulate the instructions so that they lead to the desired outcome for embryogenesis. Evolutionary processes do not have foresight. Foresight also reflects the work of a Mind. If these instructions are flawed for even a single cell during the early stages of development, the consequences would be disastrous, with the offspring turning into a “developmental monster,” compromised in its capacity to survive and reproduce. To put it differently, it is hard to envision how evolutionary processes could generate the algorithmic information needed for embryogenesis through trial and error, without the benefit of foresight.

    To help make this point clear, consider the analogy between embryogenesis and the routine performed by cheerleaders during a competition.3 Throughout the performance, each cheerleader has a specific set of movements and actions she will perform. Before the performance, her coach instructs her in exactly what to do, when to do it, and where to do it on the mat. Her individual movements and actions are different from every other team member, but when performed in conjunction with her teammates (who have their own set of instructions), the outcome can be dazzling. All this is possible, because the coach choreographed the routine ahead of the performance, with an eye toward how the routine would unfold at different stages of the performance. That is, the routine was intelligently designed with the benefit of the coach’s foresight and that design was implemented through the instructions given to each girl. If not for the coach’s foresight and instructions, chaos would ensue during the performance as each girl did whatever seemed right to her at the time.

    In like manner, during embryogenesis, each cell harbors a set of instructions that tell it: (1) what chemicals and how much of these materials to secrete to establish the gradients needed to guide development, (2) when to reproduce, (3) when and where to migrate, (4) when to differentiate, (5) when and what materials to secrete to form the extracellular matrix, and (6) when to die. In a sense, the cells are like cheerleaders. And the process of embryological development is akin to the choreography of a cheer routine. The only difference: the choreography of embryological development is much more complex, elaborate, and sophisticated.

    As with cheerleading, someone must give the cells instructions ahead of time with the end goal of embryological development in view. And I see that “someone” as the Creator.

    Knit Together in the Womb

    I also find “knitting” an apt metaphor for embryological development. My mother is an avid knitter. And whenever I watch her knit, I can’t help but recognize the similarities to a cheer routine. Knitting consists of a choreography, of sorts. Someone who knits a sweater has a final product in mind before she even picks up needles and chooses the yarn. Making use of a set of instructions—algorithmic information—that tells her which yarn to use and which knitting strokes to employ, she performs a series of actions that will eventually lead to the final product, though what that product is may not be evident at the instant those actions are performed, at least to the uninitiated.

    In this context, it is intriguing that David, the author of Psalm 139, would describe embryological development as a knitting process. David writes,

    “Your eyes saw my unformed body; all the days ordained for me were written in your book before one of them came to be.”

    – Psalm 139:16

    In light of what we have learned about embryological development, I find the scientific prescience of Psalm 139 remarkable.

    Resources

    Endnotes
    1. Michael Levin, “Bioelectric Mechanisms in Regeneration: Unique Aspects and Future Perspectives,” Seminars in Cell and Developmental Biology 20 (July 2009): 543–56, doi:10.1016/j.semcdb.2009.04.013.
    2. Sara Imari Walker and Paul C. W. Davies, “The Algorithmic Origins of Life,” Journal of the Royal Society Interface 10 (February 2013): doi:10.1098/rsif.2012.0869.
    3. One of my daughters was a competitive cheerleader. Before she started, if you would have asked me, “Are cheerleaders athletes?” I would have laughed. But after spending several years around cheerleaders, I am truly impressed with their athleticism. In short, cheerleaders are amazing athletes.
  • Earwax Discovery Gives New Hearing to the Case for Intelligent Design

    by Telerik.Sitefinity.DynamicTypes.Model.Authors.Author | Feb 22, 2017

    If you are like most people, you probably haven’t devoted much thought to earwax, unless it relates to the safest way to clean it out of your ears.

    But earwax is worth thinking about, because it is a remarkable substance with extraordinary properties, as recent work by engineers from Georgia Institute of Technology (GIT) attests.1 In fact, the GIT researchers think that they can use their new insight about earwax to develop specialized filters for electronic devices that must perform in dusty environments.

    By using earwax as an inspiration for new technology, these researchers have unwittingly provided more evidence for intelligent design, while at the same time raising a powerful challenge to the evolutionary explanation for the history and the design of life.

    What Is Earwax?

    This substance is an eclectic mixture of fatty acids, fatty alcohols, cholesterol, and squalene formed from secretions of the sebaceous and the ceruminous glands that line the outer portion of the ear canal. Earwax also consists of shed epithelial cells and hair.

    Earwax is produced by all mammals, including humans. Two different types of earwax are found in humans, referred to as wet and dry. Honey brown in color, wet earwax contains a higher concentration of lipids and pigments than dry earwax. A single genetic change converts wet earwax (which is the genetically dominant form) into dry earwax (the genetically recessive form), which is gray and flaky.

    The type of earwax a person has reflects their ancestry, with people of African and European descent having the wet variety and Asian and Native American people groups having dry earwax. Anthropologists have noted a correlation between earwax type and body odor. People with wet earwax tend to be more odiferous than people with dry earwax. Anthropologists think this correlation reflects sweat production levels, with people with wet earwax sweating more profusely than people with dry earwax. Presumably, the mutation which alters the color and consistency of the earwax also impacts sweat production. Anthropologists think that reduced sweating may have offered an advantage to Asian peoples and Native Americans, and consequently, dry earwax became fixed within these populations.

    What Is the Function of Earwax?

    Earwax serves several functions. One is protecting the inner ear from water, dust particles, and microorganisms. Even though earwax is a solid substance, it allows air to flow through it to the inner ear. Yet, the high fat content of earwax makes it an ideal water repellent, keeping water away from the inner ear. The hair fibers in earwax serve a useful function, forming a meshwork that traps dust particles. And the acidic pH of earwax and the lysosomes from the cellular debris associated with it impart this waxy secretion with antibacterial and antifungal properties.

    The fatty materials associated with earwax also help lubricate the skin of the inner ear canal as the earwax moves toward the outer ear. Earwax motion occurs via a conveyor action set up, in part, by the migration of epithelial cells toward the outer ear. These migrating cells, which move at about the same rate as fingernails grow, carry the earwax along with them. Jaw motion also helps with the earwax movement.

    By comparing earwax from several animals and by video recording earwax in human ear canals, the GIT researchers discovered that earwax has special properties that make it a non-Newtonian fluid. It is solid at rest, but flows when under pressure. Apparently, the pressure exerted on the earwax from jaw movements helps it to flow toward the outer ear. This movement serves as a cleaning mechanism, carrying the debris picked up by the earwax toward the outer ear. Interestingly, the particles picked up by the earwax alter its consistency, from a waxy material, to a flaky solid that readily crumbles, making it easier to clear the outer ear, while making room for newer, cleaner earwax.

    New Technology Inspired by Earwax

    The GIT engineers recognized that, based on its physical properties, earwax could serve as an inspiration for the design of new types of filters that could protect electronics from water and dusty environments. With a bit of imagination, it is possible to conceive of ways to take advantage of shear-thinning behavior to design filters that could be readily replaced with cleaner ones, once they have trapped their limit of dust particles.

    Biomimetics, Bioinspiration, and the Case for Intelligent Design

    It has become rather commonplace for engineers to employ insights from biology to solve engineering problems and to inspire the invention of new technologies. This activity falls under the domain of two relatively new and exciting areas of engineering known as biomimetics and bioinspiration. As the names imply, biomimetics involves direct copying (or mimicry) of designs from biology, whereas bioinspiration relies on insights from biology to guide the engineering enterprise.

    From my perspective, the use of biological designs to guide engineering efforts seems fundamentally at odds with evolutionary theory. Generally, evolutionary biologists view biological systems as the products of an unguided, historically contingent process that co-opts preexisting systems to cobble together new ones. Evolutionary mechanisms can optimize these systems, but they are still kludges, in essence.

    Given the unguided nature of evolutionary mechanisms, does it make sense for engineers to rely on biological systems to solve problems and inspire new technologies? Is it in alignment with evolutionary beliefs to build an entire subdiscipline of engineering upon mimicking biological designs? I would argue that these engineering subdisciplines do not fit with the evolutionary paradigm. On the other hand, biomimetics and bioinspiration naturally flow out of a creation model approach to biology. Using designs in nature to inspire engineering only makes sense if these designs arose from an intelligent Mind.

    Resources

    Engineers’ Muse: The Design of Biochemical Systems” by Fazale Rana (article)
    Beetles Inspire an Engineering Breakthrough” by Fazale Rana (article)

    Endnotes
    1. Society for Integrative and Comparative Biology, “The Technological Potential of Earwax,” Science News (blog), ScienceDaily, January 6, 2017, www.sciencedaily.com/releases/2017/01/17016092506.htm.
  • Recent Insights into Morning Sickness Bring Up New Evidence for Design

    by Telerik.Sitefinity.DynamicTypes.Model.Authors.Author | Feb 15, 2017

    “A woman giving birth to a child has pain because her time has come; but when her baby is born she forgets the anguish because of her joy that a child is born into the world.”
    –John 16:21

    There is no end to a mother’s love. Most willingly sacrifice and even suffer for their children’s sake. And for many women, this suffering starts in the early days of their pregnancies.

    Somewhere between 50% to 70% of women experience morning sickness—nausea, vomiting, and disgust toward certain foods—beginning near the onset of their pregnancies, and continuing for 2 to 3 months into the second trimester.

    Interestingly, no other mammal experiences morning sickness. It is a uniquely human trait. This has prompted anthropologists and biomedical scientists to ask, why does morning sickness only occur in humans?

    What Causes Morning Sickness?

    As Christians, it might be tempting to view morning sickness as part of the curse—the increased pain in childbirth—described in Genesis 3:16–17.

    Many anthropologists think that it is an epiphenomenon—a nonfunctional byproduct of humanity’s evolutionary origin. These scientists argue that morning sickness results from the genetic incompatibility between the mother and fetus that leads to a conflict for resources, causing the mother to become ill.

    But, in recent years, scientists have identified another explanation for morning sickness, dubbed the prophylaxis hypothesis. They view nausea, vomiting, and disgust toward certain foods as a protective mechanism that keeps both mother and fetus healthy during the initial critical phase of embryonic development.

    Recent work provides new support for this hypothesis,1 and, along with it, gives added insight to the biblical idea that as human beings we are fearfully and wonderfully made (Psalm 139:14). Support for the prophylaxis hypothesis also has pro-life implications.

    What Is the Purpose of Morning Sickness?

    The prophylaxis hypothesis gains support from several observations. First, there are correlations between morning sickness and both reduced incidences of miscarriages and elevated birth weights.

    As it turns out, only certain foods trigger nausea and vomiting and serve as the objects of disgust during the first trimester of pregnancy: namely, meats, poultry, eggs, strongly flavored vegetables, and some fruit. These foods are the most likely to harbor pathogens and dietary toxins that can interfere with embryological development (teratogens). Along these lines, it is interesting that the incidence of morning sickness varies from culture to culture, most likely because of dietary differences.

    The timing of morning sickness also supports the prophylaxis hypothesis. During the first trimester, the mother’s immune system is suppressed. The genetic differences between mother and fetus makes this suppression necessary. Because the fetus is only 50% genetically identical to the mother, her body treats the fetus as foreign and would otherwise attack it, if it wasn’t for the suppression of her immune system.

    Immunosuppression is maximal during the first trimester, leaving both the mother and fetus vulnerable to infection. By the second trimester, the mother’s immunosuppression becomes localized to the interface between the mother and fetus. It is during this time that the developing child’s immune system begins to form. The fetus also enjoys protection from the mother’s antibodies that are transferred to the fetus via the placenta.

    The first trimester is also critical because this is when organ development begins in the fetus. At this juncture in development, the fetus is highly vulnerable to infectious agents and reproductive toxins found in fruits and vegetables.

    There is also another role that morning sickness and disgust toward certain foods play in the early stages of pregnancy: calorie restriction for the mother. It is counterintuitive, but limiting the caloric intake benefits the pregnancy by inhibiting tissue synthesis in the mother. When calories are few, anabolic pathways shut down. This allows nutrients to be devoted to placental formation.

    Why Does Morning Sickness Only Occur in Humans?

    Researchers think that morning sickness in humans stems from our wide-ranging diet. Most mammals have highly specialized diets. Because of this, their immune systems can readily target the pathogens most likely to be found in the foods they eat. They can also make use of specialized enzymes to detoxify the teratogens most likely to be found in the foods they eat. This type of specialized protection isn’t feasible in humans, in fact, it might not even be possible at all, because our diets are so wide-ranging—varying from region to region around the world. Unlike most mammal species, humans literally occupy every corner of the planet. And this capability requires us to eat all sorts of foods. Given our highly varied diet, the most efficient and effective way to protect the mother and fetus during the first trimester of pregnancy is through nausea, vomiting, and disgust toward potentially harmful foods—unpleasant as these experiences might be.

    Morning Sickness as Evidence for the Christian Faith

    Though some biologists have argued that morning sickness is an epiphenomenon that emerged as the byproduct of human evolution, the data indicates otherwise. Morning sickness and disgust toward certain foods plays a critical function in an healthy pregnancy by protecting both the mother and the developing child. As a Christian, I see morning sickness as one more elegantly designed facet of human pregnancy.

    I also see it as affirming key passages of Scripture. Instead of seeing morning sickness as support for Genesis 3:16–17, I view it as deepening the meaning of passages in Psalm 139 describing each of us as being fearfully and wonderfully made. This latest insight about the benefit of morning sickness also expands my perspective of the idea from Psalm 139 that God has knit each of us together in our mother’s womb.

    I also see this insight relating to the command God gave us in Genesis 1 to multiply and fill the earth. To do so would require that we would be able to thrive in a wide range of habitats, demanding that we are capable of consuming a highly varied diet. And of course, this is where morning sickness plays a vital role. For humans to increase in number, while we fill the world, requires a prophylactic mechanism (such as morning sickness) to ensure healthy pregnancies.

    On a side note: The prophylaxis hypothesis also points to human exceptionalism. In contrast to our the highly varied diets, Neanderthals consumed a much more limited range of food. In fact, these differences in dietary practices likely reflect differences in the cognitive capacities of modern humans and Neanderthals. It is no accident that Neanderthals had a limited biogeographical distribution, confined to Europe, Western Asia, and the Middle East. In fact, Neanderthals’ limited diet may well have contributed to their extinction.

    Pro-Life Implications

    This work also has implications for the pro-life debate. I have often heard pro-choice advocates argue that abortion is not murder because the fetus is like a tumor. However, the latest insights into morning sickness undermine this position. This argument would gain validity if morning sickness was, indeed, an epiphenomenon, resulting from a tug-of-war between mother and fetus. But the data says otherwise. Even though the fetus is genetically distinct from the mother, the mother’s body is designed to do everything it can to protect the fetus, including develop morning sickness and disgust toward potentially harmful foods.

    Though this latest understanding about morning sickness may make evolutionary biologists and pro-choice advocates sick, it spews forth new evidence for design. (Sorry, I couldn’t resist.)

    Resources

    What Are the Odds of You Being You?” by Matthew McClure (article)
    Placenta Optimization Shows Creator’s Handiwork” by Fazale Rana (article)
    Curvaceous Anatomy of Female Spine Reveals Ingenious Obstetric Design” by Virgil Robertson (article)
    Does the Childbirth Process Represent Clumsy Evolution or Good Engineering?” by Fazale Rana (article)
    The Female Brain: Pregnant with Design” by Fazale Rana (article)
    Dietary Differences Separate Humans from Neanderthals” by Fazale Rana (article)

    Endnotes
    1. Rachel R. Huxley, “Nausea and Vomiting in Early Pregnancy: Its Role in Placental Development,” Obstetrics and Gynecology 95 (May 2000): 779–82, doi:10.1016/S0029-7844(99)00662-6; Daniel M. T. Fessler, Serena J. Eng, and C. David Navarrete, “Elevated Disgust Sensitivity in the First Trimester of Pregnancy: Evidence Supporting the Compensatory Prophylaxis Hypothesis,” Evolution and Human Behavior 26 (July 2005): 344–51, doi:10.1016/j.evolhumbehav.2004.12.001; Samuel M. Flaxman and Paul W. Sherman, “Morning Sickness: Adaptive Cause or Nonadaptive Consequence of Embryo Viability?” The American Naturalist 172 (July 2008): 54–62, doi:10.1086/588081.
  • Were Neanderthals People, Too? A Response to Jon Mooallem

    by Telerik.Sitefinity.DynamicTypes.Model.Authors.Author | Feb 08, 2017

    Recently, I conducted an informal survey through my Facebook page, asking my friends, “What do you think is the most significant scientific challenge to the Christian faith?”

    The most consistent concern related to Neanderthals. Why did God create these creatures (and other hominids)? How do we make sense of human-Neanderthal interbreeding? What about Neanderthal behavior? Didn’t these creatures behave just like us?

    These questions are understandable. And they are reinforced by popular science articles such as the piece by Jon Mooallem published recently (January 11, 2017) in the New York Times Magazine. In this piece, Mooallem interviews paleoanthropologist Clive Finlayson about his research at Gorham’s Cave (Gibraltar)—work that Finlayson claims provides evidence that Neanderthals possessed advanced cognitive abilities, just like modern humans—just like us.1

    Finlayson’s team discovered hatch marks made in the bedrock of Gorham’s Cave. They age-date the markings to be more than 39,000 years old. The layer immediately above the bedrock dated between 30,000 and 38,000 years old and contained Neanderthal-produced artifacts, leading the team to conclude that these hominids made the markings, and the hatch marks represent some form of proto-art.2

    In his piece, Mooallem cites other recent scientific claims that support Finlayson’s interpretation of Neanderthal behavioral capacity. Based on archaeological and fossil finds, some paleoanthropologists argue that these hominids: (1) buried their dead, (2) made specialized tools, (3) used ochre, (4) produced jewelry, and (5) even had language capacities.

    This view of Neanderthals stands as a direct challenge to the view espoused by the RTB human origins model, specifically the notion of human exceptionalism and the biblical view that humans alone bear the image of God.

    Mooallem argues that paleoanthropologists have been slow to acknowledge the sophisticated behavior of Neanderthals because of a bias that reflects the earliest views about these creatures—a view that regards these hominids as “unintelligent brutes.” Accordingly, this view has colored the way paleoanthropologists interpret archaeological finds associated with Neanderthals, keeping them from seeing the obvious: Neanderthals had sophisticated cognitive abilities. In fact, Mooallem accuses paleoanthropologists who continue to reject this new view of Neanderthals as being “modern human supremacists,” guilty of speciesism, born out of an “anti-Neanderthal prejudice.”

    Mooallem offers a reason why this prejudice continues to persist among some paleoanthropologists. In part, it’s because of the limited data available to them from the archaeological record. In the absence of a robust data set, paleoanthropologists must rely on speculation fueled by preconceptions. Mooallem states,

    “All sciences operate by trying to fit new data into existing theories. And this particular science, for which the ‘data’ has always consisted of scant and somewhat inscrutable bits of rock and fossil, often has to lean on those meta-narratives even more heavily. . . . Ultimately, a bottomless relativism can creep in: tenuous interpretations held up by webs of other interpretations, each strung from still more interpretations. Almost every archaeologist I interviewed complained that the field has become ‘overinterpreted’—that the ratio of physical evidence to speculation about that evidence is out of whack. Good stories can generate their own momentum.”3

    Yet, as discussed in my book Who Was Adam? (and articles listed below in the Resources section), careful examination of the archaeological and fossil evidence reveals just how speculative the claims about Neanderthal “exceptionalism” are. Could it be that the claims of Neanderthal art and religion result from an overinterpreted archaeological record, and not the other way around?

    In effect, Mooallem’s critique of the “modern human supremacists” cuts both ways. In light of the limited and incomplete data from the archaeological record, it could be inferred that paleoanthropologists who claim Neanderthals have sophisticated cognitive capacities, just like modern humans, have their own prejudices fueled by an “anti-modern human bias” and a speciesism all their own—a bias that seeks to undermine the uniqueness and exceptionalism of modern humans. And to do this they must make Neanderthals out to be just like us.

    As to the question: Why did God create these creatures (and the other hominids)? That will have to wait for another post. So stay tuned…

    Resources

    Endnotes
    1. Jon Mooallem, “Neanderthals Were People, Too,” New York Times Magazine, January 11, 2017, https://www.nytimes.com/2017/01/11/magazine/neanderthals-were-people-too.html.
    2. Joaquín Rodríguez-Vidal et al., “A Rock Engraving Made by Neanderthals in Gibraltar,” Proceedings of the National Academy of Sciences, USA 111 (September 2014): 13301–6, doi:10.1073/pnas.1411529111.
    3. Mooallem, “Neanderthals Were People.”
  • Q&A: Why Would a Limitless Creator Face Trade-Offs in Biochemical Designs?

    by Telerik.Sitefinity.DynamicTypes.Model.Authors.Author | Feb 01, 2017

    “Biologists must constantly keep in mind that what they see was not designed, but rather evolved.”
    —Francis Crick, What Mad Pursuit

    In my experience, no one denies the complexity and sophistication of biochemical systems, regardless of their philosophical or religious views. To put it another way, there is no debate. Biochemical systems have the indisputable appearance of design. The question at the center of the creation/evolution controversy relates to the source of the design. Is it the handiwork of a Creator? Or, is it the product of unguided, evolutionary processes? Is the design authentic? Or is it only apparent?

    As a creationist, I regard the elegant designs of biochemical systems as evidence for a Creator’s role in bringing life into existence. Yet, many in the scientific community would disagree, maintaining that the design emerges through evolutionary processes. In support of this position, these detractors point to so-called “bad” biochemical designs and argue that if an all-powerful, all-knowing, all-good Creator produced biochemical systems, these systems should display perfection. On the other hand, less-than-optimal designs are precisely what one would expect if life resulted from an evolutionary history.

    Are Bad Designs a Challenge to the Design Argument?

    In my book The Cell’s Design, I offer a chapter-length rejoinder to this challenge, pointing out the following:

    • Often when life scientists interpret biochemical systems as poorly designed, their view is based on an incomplete understanding of the structure and function of these systems. Inevitably, as researchers develop new insight, these systems are revealed to be additional examples of the elegant designs, characteristic of biochemistry.

    Junk DNA serves as the quintessential illustration of this point.

    • In some cases, biochemical systems labeled as flawed designs are suboptimal in reality. Their suboptimal nature is necessary for the overall system to optimally perform. Routinely, engineers intentionally suboptimize facets of the systems they design to achieve overall optimality. This practice is necessary for complex systems built to achieve multiple objectives. Inevitably, some of these objectives conflict with others. In other words, these systems face trade-offs. To manage the trade-offs, engineers must carefully suboptimize the performances of the systems’ components, again, so that the systems will result in overall optimal performances.

    Some recently discovered examples of biochemical trade-offs include:

    A Rejoinder

    After recently posting the article I wrote on the trade-offs associated with glucose breakdown, my Facebook friend Riaz, a skeptic, offered this come back:

    “There is no need for trade-offs if one has unlimited resources . . . not to mention being able to change [the] law[s] of physics and design/re-design the universe from scratch . . .”

    Trade-Offs Are Inevitable

    This is a reasonable question. Why would the Creator, described in the Bible, ever deal with trade-offs? But what if the God of the Bible did choose to produce a universe with fixed natural laws? If he did, trade-offs inevitably result. And, I contend, the elegance in which these trade-offs are managed in biochemical systems are nothing less than genius, befitting the God of the Bible.

    A Follow-Up Question

    What about Riaz’s second question? Why create a universe with unvarying natural laws, if that means suboptimal designs would necessarily result? If the Creator is infinite in power and extent, if the Creator is all-knowing and all-good, why would He confine himself so that He is forced to suboptimize even a single facet of His creation because of trade-offs?

    Interesting questions, to be sure. From my perspective, there are at least three reasons why God created the universe with unvarying natural laws.

    Constant Laws of Nature Reflect God’s Nature

    A universe with constant natural laws reflects God’s character and nature as revealed in the Old and New Testaments. Scripture teaches that:

    It is reasonable to think that the universe made by a God who does not waver would be governed by unvarying natural laws.

    Along those lines, Psalm 50:6 tells us that the “heavens declare God’s righteousness.” From my vantage point, the righteousness revealed in the heavens would be most clearly manifested through the conformity of the heavenly bodies (and all of nature, for that matter) to constant laws.

    An interesting interplay of these ideas is found in Jeremiah 33:25. Here, the Lord compares the certainty of the covenant He established with His people to the “established laws of heaven and earth.”1 To put it another way, if we ever wonder if God will keep his promises, all we need to do is look to the constancy of the laws of nature.

    Constant Laws of Nature Are Necessary for Moral Accountability

    This assertion may not seem obvious at first glance. But, careful consideration leads to the conclusion that apart from a universe with fixed laws governing nature, it is impossible to have moral laws. In his classic work Faith and Reason, the late philosopher Ron Nash writes:

    “The existence of a lawlike and orderly creation is a necessary condition for a number of divine objectives. . . . it is also reasonable to believe that God placed these free moral agents in a universe exhibiting order. One can hardly act intentionally and responsibly in an unpredictable environment.”2

    Ron Nash goes on to say:

    “If the world were totally unpredictable, if we could never know from one moment to the next, what to expect from nature, both science and meaningful moral conduct would be impossible. While we often take the natural order for granted, this order and the predictability that accompanies it function as a necessary condition for free human action. . . . One reason people can be held accountable when they pull the trigger of a loaded gun is the predictability of what will follow such an action.”3

    Constant Laws of Nature Permit Discoverability

    Unchanging natural laws render the universe (and phenomena within its confines) intelligible. If the laws of nature changed from day-to-day—or at the Creator’s whim—it would be impossible to know anything about the world around us with any real confidence. In effect, science would be impossible. The orderliness of the universe leads to predictability, the most important condition for a rational investigation of the world.

    Because the universe is intelligible, it is possible for human beings to take advantage of God’s provision for us, made available within the creation. As we study and develop an understanding of the laws of physics and chemistry, the composition of matter, and the nature of living systems, we can deploy that knowledge to benefit humanity—in fact, all life on Earth—through technology, agriculture, medicine, and conservation efforts. To put it in theological terms, the intelligibility of the universe allows us to unleash God’s providence for humanity as we come to understand the world around us.

    Ultimately, I believe that God has designed the universe for discoverability because He wants us to see, understand, and appreciate His handiwork as a Creator, so through His creation we can know Him. Scripture teaches that we can glimpse God’s glory (Psalm 19:1), majesty (Psalm 8:1), and righteousness (Psalm 50:6) from nature. From the Old Testament, we learn that God’s eternal nature (Psalm 90:2) can be gleaned from the world around us. We can see God’s love, faithfulness, righteousness, and justice (Psalm 36:5–6) in creation. This powerful revelation of God’s character is only possible because the laws of nature are constant.

    Scripture (Romans 1:20; Job 12:7–9) also teaches that we can see evidence for God’s fingerprints as well—evidence for His existence. And toward that end, I maintain that we see God’s handiwork in the elegant way trade-offs are handled in biochemical systems.

    Resources

    Endnotes
    1. Jeremiah 33:25–26.
    2. Ronald H. Nash, Faith and Reason: Searching for a Rational Faith (Grand Rapids: Zondervan, 1988), 200.
    3. Ibid., 201.
  • The Female Brain: Pregnant with Design

    by Telerik.Sitefinity.DynamicTypes.Model.Authors.Author | Jan 25, 2017

    When Jesus saw his mother there, and the disciple whom he loved standing nearby, he said to her, “Woman, here is your son.”

    –John 19:26

    I’ve learned the hard way: It is best to be circumspect when offering commentary about pregnancy, especially when women are around.

    So, it’s with some hesitation I bring up the latest scientific insight developed by a team of researchers from Spain. These investigators discovered that pregnancy alters a woman’s brain. In fact, pregnancy reduces her grey matter.1 (Okay Fuz. Hold your tongue. Don’t say what you’re thinking.)

    But, as it turns out, the loss of grey matter is a good thing. In fact, it reveals the elegant design of the human brain and adds to the growing evidence of human exceptionalism. This scientific advance also has implications for the pro-life movement.

    The Spanish research team was motivated to study brain changes in pregnant women because of the effects that sex hormones have on adolescent brains. During this time, sex hormones cause extensive reorganization of the brain. This process is a necessary part of the neural maturation process. The researchers posited that changes to the female brain should take place, because of the surge of sex hormones during pregnancy. While pregnant, women are exposed to 10 to 15 times the normal progesterone levels. During nine months of pregnancy, women are also subjected to more estrogen than the rest of their life when not pregnant.

    To characterize the effect of pregnancy on brain structure, the research team employed a prospective study design. They imaged the brains of women who wanted to become pregnant for the first time. Then, they imaged the brains of the subjects once the women had given birth. Finally, they imaged the brains of the subjects two years after birth, if they didn’t become pregnant again. As controls, they imaged the brains of women who had never been pregnant and the brains of the fathers.

    The Effects of Pregnancy on Women’s Brains

    While the brain’s white matter is unaffected, the researchers found that pregnancy leads to a loss of grey matter that, minimally, lasts up to two years. They also discovered that the grey matter loss was not random or arbitrary. Instead, it occurred in highly specific areas of the brain. In fact, the grey matter loss was so consistent from subject to subject that the researchers could tell if a woman was pregnant or not from brain images alone.

    As it turns out, the area of the brain that loses grey matter is the region involved in social cognition that harbors the theory-of-mind neural network. This network allows human beings to display a quality anthropologists call theory of mind. Along with symbolism, our theory-of-mind capacity makes us unique compared to other animals, providing scientific justification for the idea of human exceptionalism. As human beings, we recognize that other humans possess a mind like ours. Because of that recognition, we can anticipate what others are thinking and feeling. Our theory-of-mind capability makes possible complex social interactions characteristic of our species.

    Even though the pregnant women lost grey matter, they showed no loss of memory or cognitive ability. The researchers believe that the loss of grey matter stems from synaptic pruning. This process occurs in adolescents and is a vital part of brain development and maturation. Through the loss of grey matter, neural networks form. The research team posits that synaptic pruning in pregnant women establishes a neural network that plays a role in the deep attachment mothers have with their children. This attachment helps mothers anticipate their babies’ needs. The deep social connection between mother and child is critical for human survival, because human infants are so vulnerable at birth and have a prolonged childhood.

    In support of this proposal, the researchers found that when they showed the pregnant women pictures of their babies, the brain areas that lost grey matter became active. On the other hand, they saw no corresponding brain activity when the mothers were shown pictures of other babies.

    The Case for Human Exceptionalism Mounts

    This work highlights the elegant design of human pregnancy and child rearing—features that I take as evidence for a Creator’s handiwork. It is nothing short of brilliant to have the surge of sex hormones during pregnancy, priming the brain to ensure a close attachment between mother and child, at the time of birth and throughout the first few years of childhood.

    More importantly, this work adds to the mounting scientific evidence for human exceptionalism. Not only do humans uniquely possess theory of mind, but our theory-of-mind neural network is more complex and sophisticated than previously thought. It is remarkable that this neural network can be adapted and fine-tuned to ensure an intimate mother-infant attachment while maintaining relationships in the midst of complex social surroundings, typical of human interactions.

    As an interesting side note: Recent research indicates that for Neanderthals, the area of their brain devoted to maintaining social interactions was much smaller than the corresponding area in modern humans, highlighting our unique and exceptional nature even when compared to the hominids found in the fossil record.2

    Pro-Life Implications

    In my view, this work also has pro-life implications. I frequently hear pro-choice advocates argue that the fetus is a mass of tissue, just like a tumor. But, this study undermines this view. It is hard to think of a fetus as being just a lump of tissue, when such a sophisticated system is in place during pregnancy to form a neural network (that is, a subset of the theory-of-mind network) in the mother’s brain that generates the special capacity of the mother to bond with the fetus at birth.

    It also raises concerns for the health of women who receive abortions. Though speculative, one has to wonder what effect prematurely terminating a pregnancy has on women whose brains have become fine-tuned to bond to the very infants that are destroyed by the abortion.

    Resources

    Placenta Optimization Shows Creator’s Handiwork by Fazale Rana (article)
    Curvaceous Anatomy of the Female Spine Reveals Ingenious Obstetric Designby Virgil Robertson (article)
    Does the Childbirth Process Represent Clumsy Evolution or Good Engineering?by Fazale Rana (article)
    Neanderthal Brains Make Them Unlikely Social Networkersby Fazale Rana (article)

    Endnotes
    1. Elseline Hoekzema et al., “Pregnancy Leads to Long-Lasting Changes in Human Brain Structure,” Nature Neuroscience, published electronically December 19, 2016, doi:10.1038/nn.4458.
    2. Eiluned Pearce, Chris Stringer, and R. I. M. Dunbar, “New Insights into Differences in Brain Organization between Neanderthals and Anatomically Modern Humans,” Proceedings of the Royal Society B 280 (May 2013): doi:10.1098/rspb.2013.0168.
  • Does Dinosaur Tissue Challenge Evolutionary Timescales? A Response to Kevin Anderson, Part 2

    by Telerik.Sitefinity.DynamicTypes.Model.Authors.Author | Jan 18, 2017

    What is the proper relationship between science and the Christian faith? Answering that question can be complicated, involving an interplay between science, philosophy, theology, and biblical studies. Perhaps it’s not surprising that evangelical Christians (who all take Scripture seriously) advocate disparate models, weighing differently the data and insights from science and Scripture.

    The three most prominent views held by evangelical Christians are: young-earth creationism (YEC), old-earth creationism (OEC), and evolutionary creationism (EC). Each view has strengths and weaknesses. And each view accepts and rejects (or at least expresses skepticism) about certain aspects of current scientific paradigms.

    It goes without saying that “in-house” discussions among adherents of these three models can become quite contentious. And for good reason: much is at stake. No one wants to undermine Scripture. And no one wants to recklessly disregard scientifically established ideas. Because to do so could compromise the Church’s ability to reach out to non-Christians. In my view, it is okay to question scientific dogma—particularly if it challenges key tenets of the Christian faith. But it is important to do so responsibly and in a scientifically credible way.

    My chief motivation for writing Dinosaur Blood and the Age of the Earth was to prevent well-intentioned Christians from unwittingly undercutting their effectiveness when sharing their faith by using a seemingly compelling scientific argument for a young Earth (with the hope of demonstrating the credibility of the creation accounts from a young-Earth vantage point).

    Many Christians regard the discovery of soft-tissue remnants, associated with fossilized remains age-dated to be upwards of hundreds of millions of years, as a compelling scientific evidence for a young Earth. And I can see why.

    Soft tissues shouldn’t survive for millions of years. Based on common wisdom, these materials should readily degrade in a few thousand years. That being the case, the discovery of soft tissue remnants associated with fossils is a compelling reason to question the reliability of radiometric dating methods used to determine the age of these fossils, and along with it, Earth’s antiquity. Instead, YECs argue that these discoveries provide powerful scientific evidence for a young Earth and support the idea that the fossil record results from a recent global (worldwide) flood.

    Yet few scientifically minded people are swayed by this argument. In Dinosaur Blood and the Age of the Earth, I explain why this increasingly prominent argument for a young Earth is invalid. First, I explain why radiometric dating methods are reliable. Secondly, I explain how it is scientifically conceivable that soft-tissue remnants could survive for upwards of hundreds of millions of years.

    When I published Dinosaur Blood and the Age of the Earth, I expected responses by YECs. And there have been a few. Generally, I won’t engage in tit-for-tat when my ideas are criticized. But, I am making an exception in the case of Kevin Anderson’s recent technically rigorous article for Answers in Depth, the journal of Answers in Genesis, titled: “Dinosaur Tissue: A Biochemical Challenge to the Evolutionary Timescale.” Because Anderson is a scholar, and because his approach is fair-minded, it is important to pay attention to his critiques of my work and to engage his ideas.

    In part one (of this two-part blog series), I addressed Anderson’s dismissal of the biomolecular durability argument I present in Dinosaur Blood and the Age of the Earth as part of the explanation for collagen (and keratin) survivability in fossils. In this second part, I engage Anderson’s challenges to what he refers to as “the most popular explanation for prolonged preservation” of soft tissue. Namely, the “iron model.”1

    The Iron Model for Soft Tissue Preservation

    As described in Dinosaur Blood and the Age of the Earth, paleontologists have noted iron deposits associated with preserved soft-tissue remnants in a number of fossilized specimens. (In fact, iron deposits were associated with the recently discovered dinosaur feathers preserved in amber, age-dated to 99 million years.2) On this basis, they speculate that the iron in conjunction with oxygen help to preserve soft-tissue materials through a variety of possible mechanisms, including: killing off microbes, inhibiting enzymes, and causing cross-linking reactions that function as a fixative (like formaldehyde), at least until mineral entombment takes place.3 The researchers posit that iron associated with hemoglobin (the protein that binds and carries oxygen found in red blood cells) is the primary source of iron. Presumably, when the organism dies, the red blood cells lyse, releasing hemoglobin and iron into the tissue.

    To demonstrate the validity of this idea, researchers from North Carolina State University exposed ostrich blood vessels dispersed in an aqueous solution of ruptured blood cells. They observed iron deposits forming on the blood vessels. The blood cell lysate stabilized the soft tissue. Compared to blood vessels dispersed in water (in the presence and absence of oxygen) which lasted only a few days, blood vessels exposed to red blood lysates persisted for upwards of two years (and counting).

    Yet, Anderson questions the iron model for a variety of reasons.

    • He raises doubts about the relevancy of the laboratory experiments on the ostrich blood vessels.
    • He expresses concern that the iron level in dinosaurs is insufficient for it to achieve adequate preservation, even if the iron model is valid.
    • He notes that the reactions that promote cross-linking also destroys amino acids. (Even though amino acids have been recovered from dinosaur and bird fossils.)

    In my view, none of these criticisms bears much weight.

    To be fair, Anderson rightly highlights a problem constantly confronting scientists studying the origin and history of life. Namely, how do chemical and physical processes identified in the laboratory under highly controlled conditions (and the auspices of researchers) translate to the uncontrolled conditions of Earth’s past environment? Though granting Anderson this point—in fact, I have raised a similar criticism toward work in prebiotic chemistry in my book Creating Life in the Lab—it is important to acknowledge that the stability experiments with ostrich blood vessels demonstrate that, in principle, the iron model has merit. It is also worth noting that the conditions employed by the researchers in the lab experiments represent a worst-case scenario, because the vessels were dispersed in water which promotes hydrolysis and microbial growth. In other words, under “real-life” conditions, iron-mediated preservation of soft tissue has an even greater likelihood than in the experiments conducted in the laboratory.

    Concerning Anderson’s second point about iron abundances in dinosaurs (or ancient birds), it is noteworthy that iron from the lysed red blood cells binds to the ostrich blood vessels, suggesting some type of concentrating mechanism that localizes the iron to the soft tissue. Also, as Anderson acknowledges, there may be environmental sources of iron that could contribute to the iron pool. Even if there are still questions as to the source and available levels of iron for tissue preservation, this mechanism appears to be significant. As already noted, paleontologists have discovered iron associated with soft tissue remnants found in fossils.

    As for Anderson’s third point, it is true that the reaction mediated by iron and oxygen (which drives cross-linking) alters amino acids. And it is true that unaltered amino acids are found in the fossil specimens. But these two results are not mutually exclusive. How is that possible? Because chemical reactions don'[t necessarily go to completion. To put it another way, during the preservation process, it is unlikely that all the amino acids comprising dinosaur proteins reacted via the iron and oxygen mediated reactions. Some of the amino acids will remain unaltered—even highly reactive ones. It is noteworthy that the molecular profiles of materials extracted from dinosaur fossils show a relative dearth of less stable amino acids and an abundance of more durable amino acids, exactly as expected if the amino acids come from the remnants of ancient protein specimens.4

    Ultimately, my complaint with Anderson’s critiques have less to do with his scientific points, and more to do with his “either-or” posture. Even if Anderson’s critique of the iron model stands, it doesn’t mean that there is no way to account for soft-tissue preservation. As I argue in Dinosaur Blood and the Age of the Earth, there is probably no single preservation mechanism that accounts for the survival of soft tissue materials. In reality, it is a combination of mechanisms working additively (maybe, synergistically) that accounts for the persistence of soft tissue in fossils, with the iron-oxygen mechanism working in conjunction with other processes.

    Other Preservation Mechanisms

    In Dinosaur Blood and the Age of the Earth, I argue that many of the mechanisms that affect soft-tissue decomposition (hydrolysis via exposure to water, oxidation caused by oxygen exposure, breakdown by environmental enzymes, and microbial decomposition) can actually protect soft-tissue remnants under some circumstances.

    In response to this point, Anderson argues that these claims are “self-contradictory.”5 But this is exactly my point. Conditions traditionally thought to drive soft-tissue breakdown, preserve soft tissues under certain sets of conditions. In other words, traditional views about soft-tissue decomposition aren’t likely correct.

    In fact, the iron model illustrates this point. In keeping with common wisdom, exposure to oxygen drives soft-tissue destruction. Conversely, excluding oxygen during the fossilization process should aid in preservation by preventing oxidative decomposition of the soft-tissue materials. But oxidation reactions also drive cross-linking of proteins. So, exposure to oxygen also preserves soft tissues. Whether decomposition or preservation occurs depends on the specific circumstances surrounding the fossilization process, with some conditions “tipping the scale” in favor of decomposition and other conditions “moving the needle” toward preservation. And, of course, iron released from hemoglobin (or from environmental sources) accelerates the cross-linking reactions, helping to stabilize the soft-tissue materials.

    Are Fossils Thousands of Years Old or Millions of Years Old?

    Anderson concludes his argument by lamenting the bias of the scientific community. He says, “The problem is that the evolutionary community does not really consider the first alternative [dinosaurs aren’t as old as we think they are] as a possibility. Thus, it really is not an ‘either/or’ option. In their view the fossils must be old, therefore the tissue must somehow have survived (biochemical contradictions not withstanding). . . . No one has ever observed multi-millions of years of animal tissue preservation. The only reason there is even a quest for an unknown preservation mechanism is because evolutionary assumptions require dinosaur fossils to be at least 65 million years old.”6

    Anderson’s protests not withstanding, the scientific community does not assume the fossils to be millions of years old, but has measured fossils to be millions of years old using sound, scientifically established radiometric methods. Consequently, the scientific community has observed soft tissue preserved for millions of years, with the recovery of blood vessels remnants, and protein fragments from the fossils of dinosaurs (and other organisms).

    Finally, while it is true that the scientific community lacks full understanding of the mechanisms involved, preservation of soft tissues in fossils does not stand as a “biochemical contradiction.” Instead, there are sound explanations for the persistence of soft-tissue remnants in fossils. And as work continues, I predict that the scientific community will identify new preservation mechanisms. In fact, this has already happened. Researchers now think that eumelanin released from melanosomes can serve as a fixative assisting in the preservation of keratin associated with fossilized feathers, claws, and skin.7

    I appreciate Kevin Anderson’s thoughtful engagement with my ideas regarding soft-tissue preservation, but I disagree with his conclusions. Simply put, soft-tissue preservation in fossils is not a valid scientific argument for a young Earth, nor does it provide evidence that the fossil record was laid down as a result of a recent, global flood.

    Resources

    Endnotes
    1. Kevin Anderson, “Dinosaur Tissue: A Biochemical Challenge to the Evolutionary Timescale,” Answers in Genesis 11 (2016): https://answersingenesis.org/fossils/dinosaur-tissue/.
    2. Lida Xing et al., “A Feathered Dinosaur Tail with Primitive Plumage Trapped in Mid-Cretaceous Amber,” Current Biology 26 (December 19, 2016): 3352–60, doi:10.1016/j.cub.2016.10.008.
    3. Mary Schweitzer et al., “A Role for Iron and Oxygen Chemistry in Preserving Soft Tissues, Cells and Molecules from Deep Time,” Proceedings of the Royal Society B 281 (January 2014): 20132741, doi:10.1098/rspb.2013.2741.
    4. Mary Schweitzer et al., “Preservation of Biomolecules in Cancellous Bone of Tyrannosaurus Rex,Journal of Vertebrate Paleontology 17 (June 1997): 34959, doi:10.1080/02724634.1997.10010979.
    5. Kevin Anderson, “Dinosaur Tissue.”
    6. Ibid.
    7. Alison Moyer, Wenxia Zheng, and Mary Schweitzer, “Keratin Durability Has Implications for the Fossil Record: Results from a 10 Year Feather Degradation Experiment,” PLoS One 11 (July 2016): e0157699, doi:10.1371/journal.pone.0157699.
  • Does Dinosaur Tissue Challenge Evolutionary Timescales? A Response to Kevin Anderson, Part 1

    by Telerik.Sitefinity.DynamicTypes.Model.Authors.Author | Jan 11, 2017

    Is there a bona fide scientific challenge to the age of the Earth, which is measured to be 4.5 billion years old? As an old-earth creationist (OEC), I would answer no. But, there has been one scientific argument for a young Earth that has given me some pause for thought: the discovery of soft tissue remnants in the fossilized remains of dinosaurs (and other organisms). Paleontologists have discovered the remnants of blood vessels, red blood cells, bone cells, and protein fragments, such as collagen and keratin, in the fossilized remains of dinosaurs that age-date older than 65 million years.

    These unexpected finds have become central to the case made by young-earth creationists (YEC) for a 6,000-year-old Earth. In effect, the argument goes like this: Soft tissues shouldn’t survive for millions of years. Instead, these materials should readily degrade in a few thousand years. Accordingly, the discovery of soft tissue remnants associated with fossils is a prima facie challenge to the reliability of radiometric dating methods used to determine the age of these fossils, and along with it, Earth’s antiquity. YECs argue that these discoveries provide compelling scientific evidence for a young Earth and support the idea that the fossil record results from a recent global (worldwide) flood.

    As I detail in my book Dinosaur Blood and the Age of the Earth, there are good reasons to think that radiometric dating methods are reliable. And, that being the case, then there must be an explanation for soft tissue survival. Despite the claims made by YECs, there are scientific mechanisms that can account for the survival of soft-tissue materials for millions of years, as discussed in Dinosaur Blood and the Age of the Earth.

    In response to my book (and other recent challenges) to the soft-tissue argument for a young Earth, YEC Kevin Anderson wrote a piece for Answers in Depth, the journal of Answers in Genesis, titled: “Dinosaur Tissue: A Biochemical Challenge to the Evolutionary Timescale.”

    In this technically rigorous piece, Anderson argues that paleontologists now view soft-tissue remnants associated with the fossilized remains of dinosaur (and other organisms) as commonplace. On this point, Anderson and I would agree. However, Anderson complains that the scientific community ignores the troubling implications of the soft-tissue finds. He states: “Despite a large body of evidence for the authenticity of the tissue, there remains a pattern of denial within the evolutionist community—presumably to downplay the ramifications of this discovery. . . . Apparently many find the soft-tissue evidence much easier to dismiss than to understand and explain. Perhaps this should not be too surprising. The tissue is certainly difficult to account for within the popular geologic timescale.”1

    Yet, in Dinosaur Blood and the Age of the Earth, I explain how soft-tissue remnants associated with fossils are accounted for within “the popular geologic timescale.”

    Soft-Tissue Survival in Fossils

    Once entombed within a mineral encasement (which occurs as the result of the fossilization process), soft-tissue remnants can survive for vast periods of time. The key: the soft tissues must be preserved until entombment happens. In Dinosaur Blood and the Age of the Earth, I identify several factors that promote soft-tissue preservation during the fossilization process. One relates to the structure of the molecules comprising the soft tissues. Some molecules are much more durable than others, making them much more likely to survive until entombment.

    This durability partially explains the chemical profile of the compounds associated with soft-tissue remnants. For example, paleontologists have uncovered collagen and keratin fragments associated with dinosaur fossils. These finds make sense because these molecules are heavily cross-linked. And they occur at high levels in bones (collagen) and feathers, skin, and claws (keratin). Researchers also believe that iron released from hemoglobin, and eumelanin released from melanosomes associated with feathers, function as fixatives to further stabilize these molecules, delaying their decomposition.

    But What about Measured Collagen Decomposition Rates?

    Kevin Anderson agrees that some molecules, such as collagen, resist rapid degradation. However, he rejects the durability argument I present in Dinosaur Blood and the Age of the Earth as part of the explanation for collagen (and keratin) survivability, citing work published in 2011 by researchers from the University of Manchester in the UK.2

    In this study, investigators monitored collagen loss in cattle and human bones at 90 °C (194 °F). Even though this high temperature doesn’t directly apply to the fossilization process, the researchers employed a temperature close to the boiling point of water to gather rate data in a reasonable time frame. Still, it took them about one month to generate the necessary data, even at this high temperature. In turn, they used this data to calculate the bone loss at 10 °C (50 °F), which corresponds to the average temperature of a typical archaeological site in a country such as Great Britain. These calculations made use of the Arrhenius rate equation. This equation allows scientists to calculate the rate for a chemical process (such as the breakdown of collagen) at any temperature, once the rate has been experimentally determined for a single temperature. The only assumption is that the physical and chemical properties of the system (in this case, collagen) are the same as the temperature used to measure the reaction rate and the temperature used to calculate the reaction rate.

    But, as I discuss in Dinosaur Blood and the Age of the Earth, if the conditions differ, then a phenomenon known as an Arrhenius plot break occurs. This discontinuity makes it impossible to calculate the reaction rate.

    On this basis, I questioned if the data generated by the University of Manchester scientists for collagen breakdown in bone near the boiling point of water is relevant to breakdown rates for temperatures that would be under 100 °F, let alone to temperatures near 50 °F. I speculated that at such high temperatures, the collagen would undergo structural changes (for example, breaking of inter-chain hydrogen bonds that cross-link collagen chains together) making this biomolecule much more susceptible to chemical degradation than at lower temperatures where collagen would remain in its native state. In other words, the conditions employed by the research team from the University of Manchester may not be relevant to collagen preservation in fossil remains.

    Kevin Anderson challenged my claim, stating, “Dr. Rana speculates that high temperatures may unexpectedly alter how collagen will degrade, so perhaps the Arrhenius equation cannot be properly applied. However, he fails to offer any experimental support for his conclusion. If he wants to challenge these decay studies, he needs to provide experimental evidence that collagen decay is somehow an exception to this equation.”3

    Fair enough. Yet, it was relatively easy for me to find the experimental data he requires. A quick literature search produced work published in the early 1970s by a team of researchers from the USDA in Beltsville, MD describing the thermal denaturation profiles of intact collagen from a variety of animal sources.4 The onset temperatures for the denaturation process typically begin near 60 °C (140 °F), reach the mid-point of the denaturation around 70 °C (158 °F), and end around 80 °C (176 °F). In other words, collagen denaturation occurs at temperatures well below the temperatures used by the University of Manchester scientists in their study.

    From the denaturation profiles, these researchers determined that the loss of native structure primarily entails the unraveling of the collagen triple helix. This unraveling would expose the protein backbone, making it much easier to undergo chemical degradation.

    In Dinosaur Blood and the Age of the Earth, I discuss another reason why the study results obtained by the University of Manchester scientists don’t contradict the recovery of collagen from 70–80 million-year-old dinosaur remains. In effect, this research team was addressing a different question. Namely, how long can collagen last in animal remains in a form that can be isolated and used as a source of genetic information about the organisms found at archaeological and fossil sites?

    In other words, they weren’t interested in how long chemically and physically altered collagen fragments would persist in fossil remains, but, instead, how long collagen will retain a useful form that can yield insight into the natural history of past organisms. Specifically, they were interested in the survival of “the non-helical collagen telopeptides located at the very ends of each chain and recently considered potentially useful for species identification in archaeological tissues.”5

    The researchers lament that this region of the collagen molecules is “lost to the burial environment within a relatively short period of geologic time.”6 As they point out, the parts of the collagen molecule most useful to characterize the natural history of past organisms and their relationships to extant creatures, unfortunately, are “regions of the protein that do not benefit from as many interchain hydrogen bonds as the helical region, and thus will likely be the first to degrade.”7

    The researchers also point out that they expect collagen to persist for much longer than 700,000 years, but in a chemically altered state due to cross-linking reactions and other types of chemical modifications. They state, “Collagen could plausibly be detected at lower concentrations [than 1 percent of the original amounts] in much older material but likely in a diagenetically-altered state and at levels whereby separation from endogenous and exogenous contaminations is much more time-consuming, costly and perhaps applicable only to atypically large taxa that can offer sufficient fossil material for destructive analysis.”8

    In other words, chemically altered forms of collagen will persist in animal remains well beyond a million years, particularly if they are large creatures such as dinosaurs. And this is precisely what paleontologists have discovered associated with dinosaur fossils—fragments of diagentically altered collagen (and keratin).

    But What about Molecular Fragments Derived from Non-Durable Proteins Isolated from Dinosaur Remains?

    Another related challenge raised by Anderson relates to the recovery of molecular fragments of other proteins from dinosaur fossils that are much less durable than collagen. Anderson writes: “Several of these proteins (e.g., myosin, actin, and tropomyosin) are not nearly as structurally ‘tough’ as collagen. . . . Even if there were a biochemical basis that enabled collagen fragments to survive millions of years, this cannot be said about all these other dinosaur proteins.”9

    As I point out in Dinosaur Blood and the Age of the Earth, in addition to molecular durability, there are several other factors that contribute to soft-tissue preservation. One relates to abundance. Biomolecules that occur at high levels in soft tissue will be more likely to leave behind traces in fossilized remains than molecules that occur at relatively low levels.

    Along these lines, collagen and keratin would have been some of the most abundant proteins in dinosaurs and ancient birds, making up connective tissue and feathers, skin, and claws, respectively. Likewise, actin, myosin, and tropomyosin would also have occurred at high levels in dinosaurs and ancient birds, because these proteins are the major components of muscle. So even though these proteins aren’t as durable as collagen or keratin, it still makes sense that fragments of these biomolecules would be associated with dinosaur fossils because of their abundances.

    In short, the durability and abundances of proteins provide a credible explanation for the occurrence of soft-tissue remnants in the fossilized remains of dinosaurs. But these two features don’t fully account for soft-tissue preservation. As it turns out, there are additional factors to consider.

    In his article, Anderson also challenges what he refers to as “the most popular explanation for prolonged preservation” of soft tissue. Namely, the “iron model.”10 In part 2 of my response to Kevin Anderson, I will describe and respond to his critique of the iron model and other preservation mechanisms.

    Resources

    Endnotes
    1. Kevin Anderson, “Dinosaur Tissue: A Biochemical Challenge to the Evolutionary Timescale,” Answers in Genesis 11 (2016): https://answersingenesis.org/fossils/dinosaur-tissue/.
    2. Mike Buckley and Matthew James Collins, “Collagen Survival and Its Use for Species Identification in Holocene-Lower Pleistocene Bone Fragments from British Archaeological and Paleontological Sites,” Antiqua 1 (2011): e1, doi:10.4081/antiqua.2011.e1.
    3. Anderson, “Dinosaur Tissue.”
    4. Philip E. McClain and Eugene R. Wiley, “Differential Scanning Calorimeter Studies of the Thermal Transitions of Collagen: Implications on Structure and Stability,” Journal of Biological Chemistry 247 (February 1972): 692–97, https://www.jbc.org/content/247/3/692.full.pdf.
    5. Buckley and Collins, “Collagen Survival.”
    6. Ibid.
    7. Ibid.
    8. Ibid.
    9. Anderson, “Dinosaur Tissue.
  • Duck-Billed Platypus Venom: Designed for Discovery

    by Telerik.Sitefinity.DynamicTypes.Model.Authors.Author | Jan 04, 2017

    I wouldn’t classify it as a bucket-list experience, but it was off-the-charts cool to see a duck-billed platypus up close a few years ago when my wife and I visited Tasmania. This little creature reminded me of a beaver as he swam around in the water.

    But as cute and cuddly as the duck-billed platypus appears to be, I came to learn (not by experience but by listening to the zookeeper) that you don’t want to mess with this egg-laying mammal. The platypus has spurs on its hind feet, and for males, the spurs are loaded with venom. Being struck by a platypus’s spurs is no pleasant thing. The venom can kill a small animal (such as a dog) and cause excruciating pain for humans.

    Not only does the duck-billed platypus fascinate animal lovers, it has captured the attention of the scientific community. This creature is neither a placental nor a marsupial mammal. Instead, it belongs to an unusual group called the monotremes. Biologists regard monotremes as primitive mammals. And because they group apart from other mammals, many life scientists believe that they can learn a lot about the mammalian biology (including human biology) through comparative studies of the monotremes.

    Recently, researchers from Australia demonstrated the value of studying platypus biology when they discovered that a gut hormone (GLP-1) which regulates blood sugar levels doubles as a component in the duck-billed platypus’s venom.1 They believe that this insight may lead to a new drug treatment for type 2 diabetes.

    To appreciate why this research team thinks that the platypus GLP-1 hormone may have use in treating diabetes, a little background is in order.

    GLP-1

    Found in all mammals, glucagon-like peptide-1 (GLP-1) belongs to a family of biomolecules called incretins. These compounds serve as metabolic hormones that stimulate a decrease in blood glucose levels. Secreted in the gut, GLP-1 ultimately lowers blood sugar levels by making its way through the blood stream to the pancreas. GLP-1 stimulates the beta-cells in the pancreas to release insulin. In turn, insulin causes the liver, muscles, and adipose tissues to take up glucose from the blood.

    GLP-1 is named after glucagon. A blood hormone, glucagon has the opposite effect as insulin. When released by the alpha-cells of the pancreas, glucagon stimulates the liver to break down glycogen and then release glucose into the blood stream. Glucagon exerts its effect when the blood sugar level drops. Like GLP-1, glucagon also stimulates insulin release, so when the blood sugar level rises (because of glucagon’s release from the alpha-cells), the sugar is quickly taken up by muscle and adipose tissues.
    Duckbilled platypus venom

    Image: Insulin and glucagon regulate blood glucose levels in the human anatomy, specifically the liver and pancreas.

    Eating food stimulates the release of GLP-1 in the gut. This ingenious design ensures that insulin is released and the liver, muscles, and fat tissues are poised to take up glucose even before blood sugar levels rise as nutrients are absorbed into the bloodstream via the digestion process. This preparation is vital, because elevated levels of blood sugar have dangerous long-term consequences.

    Platypus Venom

    To the surprise of the Australian researchers, the venom of the duck-billed platypus contains GLP-1. Other animals, such as the Gila monster, have venom components that are structurally analogous to GLP-1, but are distinct molecules. (In the Gila monster, this bio-compound is called exendin-4.) Again, an ingenious design. Including incretins in venom causes blood sugar levels to drop after the venom is injected into the victim. Lowered blood sugar levels create confusion and lethargy.

    Unlike GLP-1, GLP-1-like venom components of, say, the Gila monster, are long-lived in the bloodstream because they have structural features that make them resistant to digestive enzymes such as dipeptidyl peptidase. This enzyme targets GLP-1 after its release to ensure it is quickly destroyed once this gut hormone triggers insulin release. If not quickly removed, insulin release would persist, thereby causing blood sugar to plummet to dangerously low levels.

    The structure of the GLP-1 produced by the duck-billed platypus appears to be fine-tuned so that this biomolecule can balance its two roles as a gut hormone and a venom component. And this property makes the platypus GLP-1 an intriguing molecule to biomedical scientists looking for more effective ways to treat type 2 diabetes. The duck-billed platypus GLP-1 is an actual gut hormone (as opposed to an analog), but is much longer lasting, which makes it an ideal anti-diabetic drug.

    Type 2 Diabetes

    The most common form of the disease, type 2 diabetes results primarily from lifestyle effects: namely, obesity and lack of exercise. (Although there also appears to be a genetic contribution to this form of diabetes.) In type 2 diabetes, the capacity of beta-cells in the pancreas to secrete insulin becomes impaired, usually because of the accumulation of amylose in their interior. Reduced insulin secretion causes blood sugar levels to remain elevated at dangerously high levels. Persistently elevated blood sugar levels can lead to heart disease, stroke, loss of vision, kidney failure, and impaired blood circulation to the extremities.

    Treatment for type 2 diabetes centers around dietary changes designed for keeping blood sugar levels low, weight loss, and increased exercise. Anti-diabetic medications also play an important role in managing type 2 diabetes. Pharmacologists have developed an arsenal of drugs, but all of them have their shortcomings.

    Platypus GLP-1 as an Anti-Diabetic Medication

    Because of the limitations of current anti-diabetic medications, pharmacologists are intrigued by the platypus version of GLP-1. Like all variants found among mammals, this gut hormone lowers blood glucose levels, but because it doubles as a venom component, it has a longer half-life than the GLP-1 hormones produced by other mammals—an ideal set of properties for an anti-diabetic drug. In fact, there is already a precedent for using venom components to treat diabetes. Exendin-4 from the Gila monster has been developed into a last resort anti-diabetic drug called Exenatide.

    The Case for Evolution, the Case for Creation

    It’s provocative that the biology of a creature, such as the duck-billed platypus, could provide such important insight into human biology that it can drive new drug development, positively impacting human health.

    This study highlights the clever designs that characterize biochemical systems. The function of GLP-1 as an incretin and, in turn, its employ as a venom component are nothing less than genius. The elegance and sophistication of biochemical systems are precisely the characteristics I, a Christian biochemist, would expect to see, if, indeed, life stems from a Creator’s handiwork. In contrast, sophistication and ingenuity aren’t the features I would expect if evolutionary mechanisms—which are unguided, co-opting preexisting designs and cobbling them together to produce new designs—have generated biochemical systems.

    Still, many people in the scientific community would argue that as hard as it may be to believe that biochemical systems evolved, it must be the case. Why? Because of the shared features that characterize these systems. As a case in point, the GLP-1 gut hormone is found in all mammals. So, presumably, this biomolecule emerged in the evolutionary ancestor of mammals and persists in all mammals today. Likewise, the shared features of GLP-1 and exendin-4 found in the Gila monster venom indicate to many biologists that the venom component must be evolutionarily derived from GLP-1.

    Yet, as a creationist and an intelligent design proponent, I choose to interpret the universal nature of the cell’s chemistry and shared features of biochemical systems as manifestations of archetypical designs that emanate from the Creator’s mind—inspired by the thinking of Sir Richard Owen. To put it differently, for me, the shared features reflect common design, not common descent.

    Of course, this leads to the follow-up rebuttal: Why would God create using the same template? Why not create each biochemical system from scratch to be ideally suited for its function? As I pointed out recently, there may well be several reasons why a Creator would design living systems around a common set of templates. In my estimation, the most significant reason is discoverability. The shared features of biochemical systems make it possible to apply what we learn by studying one organisms to all others, in some cases. As a case in point: The occurrence of GLP-1 in all mammals and the shared features of GLP-1 and exendin-4 make it possible to gain insight into human biology by studying the duck-billed platypus.

    This discoverability makes it easier to appreciate God’s glory and grandeur, as evinced in biochemical systems by their elegance, sophistication, and ingenuity.

    Discoverability of biochemical systems also reflect God’s providence and care for humanity. If not for the shared features, it would be nearly impossible for us to learn enough about the living realm for our benefit. Where would biomedical science be without the ability to learn fundamental aspects about our biology by studying model organisms such as yeast, fruit flies, and mice? How would it be possible to identify new medications if not for the biochemical similarities between humans and other creatures, such as the duck-billed platypus?

    Far from making no sense, the shared features in biochemistry are a manifestation of the Creator’s care and love for humanity.

    Resources

    Endnotes
    1. Enkhjargal Tsend-Ayush et al., “Monotreme Glucagon-Like Peptide-1 in Venom and Gut: One Gene—Two Very Different Functions,” Scientific Reports 6 (November 29, 2016): id. 37744, doi:10.1038/srep37744.
  • Q&A: Why Would an Infinite Creator Employ the Same Designs?

    by Telerik.Sitefinity.DynamicTypes.Model.Authors.Author | Dec 21, 2016

    Because I am a Christian, I see evidence for design in the biological realm. But for me, the converse is also true. Because I see design in the biological realm, I am a Christian. In fact, the elegant designs of biochemical systems convinced me as a graduate student that a Creator must exist and be responsible for life’s origin, paving the way for my conversion to Christianity.

    Yet, many skeptics see the features of biological systems very differently than I do. They maintain that life’s origin, design, and diversity are best explained as the outworking of evolutionary processes. As evidence for this view, biologists point to the shared biological and biochemical features (homologies) possessed by organisms that naturally group or cluster together.

    Homologous features may perform different functions and superficially appear different, yet they are fundamentally built around the same design. The quintessential example of a biological homology is the vertebrate forelimb—the human hand, the whale’s flipper, a dog’s paw, a bird’s wing, etc. Though these forelimbs are structurally distinct and perform different biological tasks, they are fundamentally built around the same design. The forelimb of every vertebrate consists of a long bone (humerus) in the arm, an elbow, two bones in the forearm (the radius and ulna), wrist bones (carpals), bones in the “hand” (metacarpals), and “fingers” (phalanges).

    blog__inline--why-would-an-infinite-creator-employ-the-same-designs-1
    Image: Homologous structures of the vertebrate forelimb. Image Credit: Wikipedia

    Evolutionary biologists interpret homologous structures as evolutionarily derived from ancestral features possessed by the common ancestor of the group. With respect to the vertebrate forelimbs, biologists maintain that the forelimb of the first tetrapods had the same design as all vertebrate forelimbs. However, through the course of evolutionary history, natural selection altered the vertebrate forelimbs to perform a variety of functional roles.

    However, as a creationist and a design proponent, I maintain that homologous structures have been designed around an archetypical plan that existed in the Creator’s mind. To put it another way, homologous structures reflect common design, not the outworking of common descent.

    My view on shared biological features led my Facebook friend Phil, a skeptic, to ask the following questions:

    “Just think about the diverse range of creatures an actual creator could have made. And yet we see creatures appearing like and acting like family cousins instead. What would compel an actual designer with unlimited power to design all creatures with the same template, as if the design was a restriction on the designer? Perhaps it was to make belief more difficult, to make only rebellious (non-credulous) hearts disbelieve?”

    Interesting questions, to be certain. This question gets to the core reason why evolutionary biologists reject the arguments for intelligent design. For these many biologists, homologous structures only make sense from within an evolutionary framework.

    The View of Biological Homologies before Darwin

    Part of the response to my friend Phil’s question can be found in the theoretical work of Sir Richard Owen, a prominent biologist from the UK who predated Darwin. One of the world’s most important anatomists in his day, Owen played a key role in discovering, describing, and interpreting biological homologies. Owen understood homologies from a design perspective. Specifically, Owen saw these mutual features as manifestations of a common blueprint that existed in the Creator’s mind, and, in turn, were physically manifested in the created order.

    Archetypes and God’s Creativity

    Instead of seeing the concept of the archetype as restricting God’s creativity, Owen regarded the archetype as reflecting teleology of the highest order. In his presentation to the Royal Institution of Great Britain, Owen lectured: “The satisfaction felt by the rightly constituted mind must ever be great in recognizing the fitness of parts for their appropriate functions; but when this fitness is gained as in the great toe of the foot of man or the ostrich, by a structure which at the same time betokens harmonious concord with a common type, the prescient operations of the One Cause of all organization becomes strikingly manifested to our limited intelligence.”1

    In other words, Owen marveled at the way the Creator generated so much functional diversity from a single template—for example, the pentadactyl architecture of the vertebrate forelimb.

    In fact, the diversity of life on Earth today—even throughout life’s history—built from 30 or so body plans (corresponding to the known animal phyla) is nothing short of mind-boggling. So, apparently creating life on Earth around design templates has done little to limit the Creator. In fact, I would argue—as Owen did— it highlights God’s ingenuity.

    Designed for Discovery

    There are a few reasons why God would have created life’s diversity using a limited set of templates. But, perhaps the most important reason is discoverability.

    The universal nature of biochemistry and the homologous and convergent biological systems allow scientists to generalize what they learn studying one organism to the entirety of the biological realm, in some instances. The universal and homologous designs in biology allow the scientific community to make use of organisms as model systems. For example: by studying DNA replication in bacteria, we have gained key insight that allows us to understand DNA replication in all life on the planet. Studying gene regulation in yeast helps us understand gene regulation in human beings. Studying the developmental pathways of the nematode C. elegans has yielded important knowledge that helps us understand growth and development in many multicellular organisms. Studying genetics in the fruit fly Drosophila has provided key understanding regarding inheritance.

    If, as my friend Phil wants, the Creator used a near infinite array of biological designs when he created, it would be virtually impossible for us to know anything about the living realm. The process of discovery in biology would become cumbersome and laborious.

    Because the living realm is intelligible, it is possible for human beings to take advantage of God’s provision for us, made available within the creation. As we study and develop an understanding of the living realm, we can deploy that knowledge to benefit humanity—in fact, all life on Earth—through agriculture, medicine, conservation efforts, and emerging biotechnologies.

    Ultimately, I believe that God has designed the biological realm for discoverability because He wants us to see, understand, and appreciate his handiwork as a Creator, so through his creation we can know him.

    “It is the glory of God to conceal a matter; to search out a matter is the glory of kings.”

    Proverbs 25:2

    Resources

    Endnotes
    1. Richard Owen, On the Nature of Limbs: A Discourse, ed. Ron Amundson (Chicago: University of Chicago Press, 2007), 38.
  • Reactive Oxygen Species: Harbingers of Evolution or Signals of Design?

    by Telerik.Sitefinity.DynamicTypes.Model.Authors.Author | Dec 14, 2016

    Few concepts have been embraced by popular science as enthusiastically as the idea that reactive oxygen species (ROS) are harmful and that their levels should be controlled by including antioxidants in the diet or as supplements.1

    –Ulrich Theopold

    Antioxidants are the latest diet fad. Many people do whatever they can to include foods high in antioxidants in their diets. Some people even go a step further by taking antioxidant supplements. All these actions are meant to combat the harmful effects of reactive oxygen species (ROS). Produced in the mitochondria, these highly reactive chemical derivatives of molecular oxygen will destroy cellular components if left unchecked.

    Yet things aren’t always what they seem. An increasing number of studies indicate that taking dietary supplements of antioxidants has questionable health benefits.2 In fact, taking certain antioxidant supplements may be harmful. For example, studies indicate that people who supplement their diets with vitamin E and beta-carotene have higher mortality rates compared to people who don’t take antioxidant supplements at all. Other studies demonstrate that instead of slowing cancer’s spread, antioxidants, in fact, accelerate the progression of certain cancers. Antioxidant consumption also impacts development, harming certain types of stem cells.

    When it comes to antioxidants and ROS, the scientific community has made another surprising about-face. Biochemists no longer view ROS as harmful compounds, wreaking havoc on the cell’s components. Instead, they have learned that ROS play a key role in cell-signaling processes. As it turns out, consumption of excessive antioxidants interferes with ROS-based signaling pathways. And this interference explains why consuming inordinate levels of antioxidants aren’t part of a healthy lifestyle.

    The surprising implications of this new insight regarding antioxidants and ROS extend beyond dietary considerations. This new understanding has bearing on the creation vs. evolution debate by providing a response to a common objection skeptics level against intelligent design arguments.

    ROS Generation and the Case for Evolution

    ROS are primarily produced in the mitochondria by the electron transport chain (ETC). The ETC harvests energy needed to carry out the various biochemical operations that take place within the cell. For the most part, the ETC is comprised of a series of protein complexes, conceptually organized into a linear array. The first complex of the ETC receives chemically energetic electrons (ultimately, derived from the breakdown of biochemical fuels) and passes them along to the next complex in the ETC. Eventually, these electrons are handed off from complex to complex, until they reach the terminal part of the ETC. When shuttled from one complex to the other, the electrons give up some of their energy. This released energy is captured, and ultimately used to produce compounds such as ATP, which serve as energy currency inside the cell.

    blog__inline--reactive-oxygen-species-1
    Image: Illustration of electron transport chain with oxidative phosphorylation.

    One of the final steps carried out by the ETC is the conversion of molecular oxygen into water, with oxygen receiving the de-energized electrons. If the energy status of the cell is high, the movement of electrons through the ETC slows down, and, under some circumstances, becomes backed up. When this jam occurs, the electrons prematurely react with oxygen because they must go somewhere. (This usually happens between complex I and complex III). When this premature termination takes place, ROS (which include the superoxide ion, the hydroxyl free radical, and hydrogen peroxide) form instead of water.

    At face value, it appears as if ROS form as an unintended side reaction. Traditionally, biochemists regard ROS as deadly compounds that oxidize membrane components, DNA, and proteins, causing untold damage to the cell.

    For many skeptics, the apparently random, unwanted generation of ROS which terrorize the cell undermines the case for intelligent design and serves as evidence for an evolutionary origin of biochemical systems. Why? Because the seemingly unintended production of chemically destructive ROS has all the markings of a flawed system—the type of system unguided evolutionary processes would produce, not the type of design befitting a Creator.

    The Cellular Roles of ROS

    Yet in recent years, biochemists have come to see ROS differently. Instead of the product of an unwanted side reaction, biochemists have come to discover that these compounds serve as second messengers, communicating the cell’s energy status to key metabolic processes, including those that regulate stem cell development.3 These mechanisms allow the cell to coordinate various metabolic processes for the available bioenergetics sources.

    Because hydrogen peroxide has the chemical stability and capacity to dissolve through membranes, biochemists believe that it functions as the primary second messenger. Still, the other ROS do play a role in cell signaling.

    ROS can serve as second messengers because they preferentially oxidize certain amino acids in proteins, with cysteine residues often targeted. The selective oxidation of amino acid residues modifies the activity of the protein targets. Targeted proteins include transcription factors (which control gene expression), and kinases and phosphatases (which regulate different stages of the cell cycle). These protein targets explain why ROS play a critical role in stem cell renewal, stem cell proliferation, and maturation.

    Oxidative Damage by ROS Is a Trade-Off

    ROS are ideal second messengers for communicating and coordinating the cell’s metabolic pathways with respect to the cell’s energy status, because their production is closely linked to the ETC. When the energy status of the cell is high, ROS production increases. And when the cell’s energy status dips, ROS production tails off. In my view, there is an exquisite molecular logic that undergirds the use of ROS as second messengers for communicating the cell’s energy balance.

    Of course, the drawback to using ROS as second messengers is the oxidative damage these materials cause. But instead of viewing the damaging effects of these compounds as a flawed design, I maintain that it is better to think of it as a trade-off.

    Towards that end, it is important to note that the cell has an extensive and elaborate system to buffer against the harmful effects of ROS. For example, superoxide dismutase converts superoxide into hydrogen peroxide. Two other enzymes, catalase and peroxiredoxin, transform hydrogen peroxide into water. In fact, one of the targets of ROS are transcription factors that trigger the production of proteins that are part of the cell’s antioxidant defenses and proteins that take part in pathways that clear damaged proteins from the cell. This ingenious design ensures that once ROS form and play a role as second messengers, the damaged proteins are quickly destroyed and any destruction they cause is mitigated.

    It is truly remarkable how dramatically the scientific community’s views on ROS (and antioxidants) have changed in recent years. Instead of being the unwanted byproducts of metabolism that plagued the cell, ROS serve as a biochemical fuel gage, triggering processes such as quiescence and even autophagy (programmed cell death) when the energy balance is too low and the cell is experiencing starvation and cell differentiation (which impacts stem cell biology) when energy stores are sufficiently full.

    Often, skeptics point to so-called bad designs as evidence for an evolutionary history for life. But, the changed perspective of ROS serves as a cautionary tale. Many times, what is perceived as a bad design turns out to be anything but as we learn more about the system, and these discoveries undermine the best arguments for evolution while adding to the mounting case for intelligent design.

    Resources

    The Cell’s Design by Fazale Rana (book)
    30% Inefficiency by Design” by Fazale Rana (article)
    The Human Appendix: What Is It Good For?” by Fazale Rana (article)
    New Research Highlights Elegant Design in the Inverted Retina” by Fazale Rana (article)
    Wisdom Teeth Reflect the Creator’s Foresight” by Fazale Rana (article)
    Is the Whale Pelvis a Vestige of Evolution?” by Fazale Rana (article)

    Endnotes
    1. Ulrich Theopold, “Developmental Biology: A Bad Boy Comes Good, Nature 461 (September 2009): 486–87, doi:10.1038/461486a.
    2. Center for the Advancement of Health, “Antioxidant Users Don’t Live Longer, Analysis of Studies Concludes,” Science News (blog), ScienceDaily, April 16, 2008, https://www.sciencedaily.com/releases/2008/04/080415194233.htm; University of Gothenburg, “Antioxidants Cause Malignant Melanoma to Metastasize Faster,” Science News (blog), ScienceDaily, October 8, 2015, https://www.sciencedaily.com/releases/2015/10/151008131112.htm; Ed Yong, “Antioxidants Speed Up Lung Cancer,” Daily News (blog), The Scientist, January 29, 2014, https://www.the-scientist.com/?articles.view/articleNo/39022/title/Antioxidants-Speed-Up-Lung-Cancer/; University of Helsinki, “Large Doses of Antioxidants May Be Harmful to Neuronal Stem Cells,” Science News (blog), ScienceDaily, June 11, 2015, https://www.sciencedaily.com/releases/2015/06/150611091340.htm.
    3. Kira Holmström and Toren Finkel, “Cellular Mechanisms and Physiological Consequences of Redox-Dependent Signalling,” Nature Reviews Molecular Cell Biology 15 (June 2014): 411–21, doi:10.1038/nrm3801; Carolina Bigarella, Raymond Liang, and Saghi Ghaffari, “Stem Cells and the Impact of ROS Signaling,” Development 141 (November 2014): 4206–18, doi:10.1242/dev.107086.
  • Science News Flash: An Old-Earth Perspective on Dinosaur Feathers Preserved in Amber

    by Telerik.Sitefinity.DynamicTypes.Model.Authors.Author | Dec 09, 2016

    Whenever we are in a foreign country, my wife loves to shop at local, out-of-the-way markets. She always finds some of the most interesting souvenirs.

    It turns out the same is true for paleontologist Lida Xing who purchased several amber pieces from a market in Myitkyina in the country of Myanmar. The amber sold at the market comes from a nearby mine in the Hukawng Valley. While most buyers are looking for amber to make jewelry, Xing was looking for amber with inclusions of plant and animal remains. The amber from the mine dates to 99 million years. Because of the amber’s age, the well-preserved plant and animal remains entombed by this fossilized tree resin offer a unique glimpse at ancient life on Earth, providing details and insight that far exceed those available from highly compressed fossil remains that typically comprise the fossil record.

    As fate would have it, one of the amber pieces Xing purchased contains a piece of a dinosaur tail (perhaps from a maniraptor) with attached feathers! This discovery is described in a paper that will appear in the December 19 issue of Current Biology.1 Yesterday the paper was published online ahead of the publication date and it has already generated headlines both in the popular news and on social media.

    This is not the first time researchers have discovered feathers preserved in amber. But it is the first time they have observed feathers associated with parts of a dinosaur, in this instance a section of the tail (near the middle or end) that includes eight vertebrae. The anatomical features clearly indicates that the preserved tail belongs to a large group of dinosaurs labeled the coelurosaurs.

    It goes without saying that this find has already caused quite a bit of a stir because of its important implications for evolutionary and creation models for bird origins.

    An Evolutionary Perspective of the Discovery

    For many in the scientific community this discovery further affirms the evolutionary link between birds and dinosaurs, with feathered dinosaurs viewed as transitional intermediates. Along these lines, the researchers describe the dinosaur feathers preserved in amber as transitional, noting that the feather’s central shaft (rachis) is poorly defined. On this basis, the researchers argue that the rachis was a late-appearing feature in feathers, forming when the barbs of the feather fused together.

    An Old-Earth Creationist Response

    As an old-earth creationist, I’m skeptical about the evolutionary account that has birds evolving from theropods. In fact, this latest discovery only adds to my skepticism.

    Paleontologists interpret feathered dinosaurs from the fossil record as transitional intermediates between theropods and birds—including the feathered dinosaur tail found in amber. Yet, each occurrence of feathered dinosaurs in the fossil record appear after the first true bird, Archaeopteryx.2 Based on the fossil record, this ancient bird appeared on Earth around 155 million years ago. Archaeopteryx’s feathers were identical to the feathers of modern birds. In fact, the same research team discovered bird feathers in 99-million-year-old amber from the same source that yielded the amber with the dinosaur feathers. The bird feathers, like those of Archaeopteryx, are identical to those found in modern birds.

    It is hard to imagine how the “primitive” feathers associated with the dinosaur tail (again, dated at 99 million years in age) could be transitional if they appear over 50 million years after Archaeopteryx and co-occur with feathers from a bird belonging to enantiornithes.

    This problem is not unique to the bird fossil record. There are several instances in which presumed transitional forms appear in the fossil record well after the first appearance of their evolutionary descendants. In fact, paleontologist have a name for this phenomenon: a temporal paradox.

    For a more complete discussion of the problems I see with the proposed evolutionary link between birds and theropod dinosaurs, see “Birds in the Fossil Record” (listed in the resource section below).

    A Young-Earth Creationist Perspective of the Discovery

    One exciting aspect of this find is the possibility that soft-tissue remnants associated with the features may be preserved in the amber. The researchers discovered iron (in the ferrous form) associated with the carbonized feather remains. They speculate that this iron derives from hemoglobin originally found in the tail muscle tissue. On this basis, the research team speculates that soft-tissue remnants derived from keratin may be present in the amber-entombed specimen.

    In recent years, young-earth creationists have made use of these types of finds to argue that it is impossible for such fossils to be millions of years old. They argue that soft tissues shouldn’t survive that long. These materials should readily degrade in a few thousand years. In their view, these finds challenge the reliability of radiometric dating methods used to determine the age of these fossils, and along with it, Earth’s antiquity. Instead, they argue that these breakthrough discoveries provide compelling scientific evidence for a young Earth and support the idea that the fossil record results from a recent global (worldwide) flood.

    An Old-Earth Creationist Response

    These types of claims prompted me to write Dinosaur Blood and the Age of the Earth. In this work (and elsewhere), I explain why the recovery of soft-tissue remnants associated with fossil finds is illegitimate evidence for a young Earth.

    Given the structural robustness of keratin, and the preservative effect of ferrous iron, it is completely reasonable to think that keratin remnants associated with the feathers could survive long enough to be completely entombed by the amber and eventually persist for nearly 100 million years.

    Though this find will be interpreted by the scientific community from an evolutionary vantage point and, more than likely, opted by young-earth creationists to challenge the antiquity of Earth and life on Earth, the dinosaur feathers entombed in amber can readily be accommodated from an old-earth creationist vantage point.

    Resources

    Creation vs. Evolution Controversy

    Is There a Controversy about Evolution?by Fazale Rana (article)
    The Creation-Evolution Controversy in Jurassic Worldby Fazale Rana (article)

    Age-of-the-Earth Controversy

    Dinosaur Blood and the Age of the Earthby Fazale Rana (book).
    Can Keratin in Feathers Survive for Millions of Years?by Fazale Rana (article)

    Endnotes
    1. Lida Xing et al., “A Feathered Dinosaur Tail with Primitive Plumage Trapped in Mid-Cretaceous Amber,” Current Biology 26 (December 19, 2016): 1–9, doi:10.1016/j.cub.2016.10.008.
    2. Some paleontologists claim that the temporal paradox for bird origins was solved based on the discovery of a feathered theropod that dates between 151 and 161 million years in age. (See Dongyu Hu et al., “A Pre-Archaeopteryx Troodontid Theropod from China with Long Feathers on the Metatarsus,” Nature 461 [October 1, 2009]: 640–43, doi:10.1038/nature08322.) However, at best, this find demonstrates the co-occurrence of feathered dinosaurs and the first true bird, when the error bars of the age-date measurements are taken into account.
    3. Lida Xing et al., “Mummified Precocial Bird Wings in Mid-Cretaceous Burmese Amber,” Nature Communications 7 (June 28, 2016): 12089, doi:10.1038/ncomms12089.

About Reasons to Believe

RTB's mission is to spread the Christian Gospel by demonstrating that sound reason and scientific research—including the very latest discoveries—consistently support, rather than erode, confidence in the truth of the Bible and faith in the personal, transcendent God revealed in both Scripture and nature. Learn More »

Support Reasons to Believe

Your support helps more people find Christ through sharing how the latest scientific discoveries affirm our faith in the God of the Bible.

Donate Now

U.S. Mailing Address
818 S. Oak Park Rd.
Covina, CA 91724
  • P (855) 732-7667
  • P (626) 335-1480
  • Fax (626) 852-0178
Reasons to Believe logo