Reasons to Believe

Design Seen in Primordial Supernovae Rate

TNRTB Archive - Retained for reference information

Recent simulation results of the first generation of stars provide additional evidence of design in the universe. Before the first generation of stars, hydrogen and helium were the predominant constituents of the matter in the universe. The first-generation stars were very massive; they burned hydrogen and helium into heavier elements very quickly and released large quantities of heavy elements back into space when they underwent supernova explosions. The ashes from these first stars were subsequently incorporated into future generations of stars, starting the processes that produce all the material required to make rocky planets and life. Simulations by two Stanford cosmologists show that the peak of the supernova rate from the first-generation stars occurred early enough in the universe’s history that it could uniformly enrich the early universe with a significant amount of heavier elements. If the peak had occurred later, the universe would have expanded too much for sufficient metals to have been formed and distributed. RTB’s creation model predicts such fine-tuning in the development of the universe. 

o   John H. Wise and Tom Abel, “The Number of Supernovae from Primordial Stars in the Universe,” Astrophysical Journal 629 (2005): 615-24.


·         Related Resource

o   Hugh Ross, Predictive Power: Affirming Cosmic Creation

·         Product Spotlight

o   The Creator and the Cosmos, 3rd ed., by Hugh Ross

Subjects: Universe Design

Dr. Hugh Ross

Reasons to Believe emerged from my passion to research, develop, and proclaim the most powerful new reasons to believe in Christ as Creator, Lord, and Savior and to use those new reasons to reach people for Christ. Read more about Dr. Hugh Ross.